当前位置: 首页 > news >正文

MapReduce基础原理、MR与MPP区别

MapReduce概述

  • MapReduce(MR)本质上是一种用于数据处理的编程模型;MapReduce用于海量数据的计算HDFS用于海量数据的存储(Hadoop Distributed File System,Hadoop分布式文件系统)。
  • Hadoop MapReduce 是一个编程框架,Hadoop环境中,可运行用各种语言编写的MapReduce程序,用于创建在大型商用硬件集群上处理大量数据的应用程序,类似于JRE环境,可以在这个架构下开发应用程序。
  • MapReduce 程序本质上并行,本质是通过并行计算提升算力。
  • MapReduce是一种编程模型,用于通过集群上的并行分布式算法处理大型数据集。MapReduce会将任务分为小部分,将它们分配给不同系统来独立处理每个部分,在处理完所有零件并进行分析之后,将输出收集到一个位置,然后为给定问题输出数据集
  • MapReduce使用的基本信息单位是键值对在通过MapReduce模型传递之前,所有结构化或非结构化数据都需要转换为键值对
  • MapReduce模型具有两个不同的功能,映射功能和归约功能
  • MapReduce 的工作模式主要分为 Map 阶段和还原阶段(shuffle阶段和reducer阶段)。
  • 操作顺序始终为:Map -> Shuffle -> Reduce
    • Map阶段:Map阶段是MapReduce框架中的关键步骤,映射器将为非结构化数据提供结构,映射器将一次处理一个键值对,一个输入可以产生任意数量的输出,Map函数将处理数据并生成几个小数据块
    • 还原阶段:shuffle阶段和reducer阶段一起称为还原阶段,Reducer将来自映射器的输出作为输入,并按照程序员的指定进行最终输出,此新输出将保存到HDFS。Reducer将从映射器中获取所有键-值对,并检查所有键与值的关联;将获取与单个键关联的所有值,并将提供任意数量的键值对的输出。
    • MapReduce是顺序计算,为保障Reducer正常工作,Mapper必须完成执行,否则Reducer阶段将不会运行。
  • 在 Hadoop 集群中,计算节点一般和存储节点相同,即 MapReduce 框架和 HDFS(Hadoop 分布式文件系统)均运行在同一组节点上。这种配置允许框架有效地调度已经存在数据的节点上的作业,使得跨集群的带宽具有较高的聚合度,能够有效利用资源。

MapReduce 工作原理

一个 MapReduce 任务(Job)通常将输入的数据集分割成独立的块,这些块被 map 任务以完全并行的方式处理。框架对映射(map)的输出进行排序,然后将其输入到 reduce 任务中。通常,作业的输入和输出都存储在文件系统中。框架负责调度任务、监视任务并重新执行失败的任务

上面说到,MapReduce 框架只对 <key, value> 键值对形式的键值对进行处理。
该框架会将任务的输入当成一组 <key, value> 键值对,最后也会生成一组 <key, value> 键值对作为结果。其中的 key 和 value 可以根据具体问题将其理解为不同的类型。

key 和 value 的类必须由框架来完成序列化,因此我们需要做的就是实现其中的可写接口(Writable)。此外,对于其中的一些关键类还必须实现 WritableComparable 接口,以便于框架对其进行排序。

一个 MapReduce 作业从输入到输出的过程中,经历了以下过程:
(输入的原始数据)<k1, v1> -> Map -> <k2, v2> -> Combine -> <k2, v2> -> Reduce -> <k3, v3>(输出的计算结果)
在这里插入图片描述

在这里插入图片描述

ResourceManager

MapReduce 框架由单个主节点(Master)的 ResourceManager每个从节点(Slave) NodeManager每个应用程序的 MRAppMaster组成。

在编程框架完善并打包之后,Hadoop 的作业客户端(job client)可以将作业(一般是 jar 包或者可执行文件)和配置项提交给 ResourceManager,ResourceManager负责将作业代码和配置项分发给从节点(Slave),之后ResourceManager负责作业的调度和监视,同时也向作业客户端提供状态和诊断信息。
在这里插入图片描述

  • Client Service:应用提交、终止、输出信息(应用、队列、集群等的状态信息)。
  • Adaminstration Service: 队列、节点、Client 权限管理。
  • ApplicationMasterService: 注册、终止 ApplicationMaster, 获取 ApplicationMaster 的资源申请或取消的请求,并将其异步地传给 Scheduler, 单线程处理。
  • ApplicationMaster Liveliness Monitor: 接收 ApplicationMaster 的心跳消息,如果某个 ApplicationMaster 在一定时间内没有发送心跳,则被任务失效,其资源将会被回收,然后 ResourceManager 会重新分配一个 ApplicationMaster 运行该应用(默认尝试 2 次)。
  • Resource Tracker Service: 注册节点, 接收各注册节点的心跳消息。
  • NodeManagers Liveliness Monitor: 监控每个节点的心跳消息,如果长时间没有收到心跳消息,则认为该节点无效, 同时所有在该节点上的 Container 都标记成无效,也不会调度任务到该节点运行。
  • ApplicationManager: 管理应用程序,记录和管理已完成的应用。
  • ApplicationMaster Launcher: 一个应用提交后,负责与 NodeManager 交互,分配 Container 并加载 ApplicationMaster,也负责终止或销毁。
  • YarnScheduler: 资源调度分配, 有 FIFO(with Priority),Fair,Capacity 方式。
  • ContainerAllocationExpirer: 管理已分配但没有启用的 Container,超过一定时间则将其回收。

MPP与MapReduc区别

MPP和MapReduc的区别主要体现在计算方式上,MPP和MapReduce都是用于实现并行化处理的技术,但它们采用的并行化策略不同

关于MPP理解
MPP(Massively Parallel Processing)即大规模并行处理,是一种在多个处理器间分配工作负载的并行计算模型,常用于传统的关系数据库管理系统中,以提高数据库处理的性能和吞吐量。MPP系统通常由成百上千个节点(节点指的是一组处理器和存储器)组成,每个节点都运行数据库的一个实例,各个节点之间通过高速网络互相通信,MPP系统会将数据表分片(通过切割表中的行),这些数据片会被分配到每个节点上,每个节点都有独立的存储器。

MPP系统的平行计算方式是将数据库划分为若干个子部分,设定若干个可供并行计算的操作,每个操作运行在一个节点上,从而并行地进行处理,由于MPP的数据是在不同节点分片存储,因此一般来说MPP的计算任务每一部分是和固定节点绑定的。

MapReduc是一种基于“映射(Map)”和“化简(Reduce)”的并行计算模型,主要用于海量数据的分布式处理。一般来说,MapReduce将大数据集分成若干个小数据块,并且将每个数据块分配给不同的计算节点来处理。每个节点都独立地对数据块进行“Map”操作,得到中间数据,然后将相同中间数据的部分发送到同一节点进行“Reduce”操作,最终将得到的数据合并起来,得到最终结果。

因此,MPP和MapReduce在并行计算中的采用策略不同,更应用于不同的领域。MPP主要用于传统的关系型数据库的大规模并行处理,适合相对简单的计算场景。MapReduce更适合分布式计算、海量数据的分析和处理,适用于更复杂、更庞大的场景。虽然两种技术都有其优缺点,但在不同的情况下,它们都有效地推动了计算的并行处理。

MapReduce: Simplified Data Processing on Large Clusters

相关文章:

MapReduce基础原理、MR与MPP区别

MapReduce概述 MapReduce&#xff08;MR&#xff09;本质上是一种用于数据处理的编程模型&#xff1b;MapReduce用于海量数据的计算&#xff0c;HDFS用于海量数据的存储&#xff08;Hadoop Distributed File System&#xff0c;Hadoop分布式文件系统&#xff09;。Hadoop MapR…...

位运算符让人反胃

A60 B13 二进制下 A00111100 B00001101 &&#xff08;同1为1&#xff09; A00111100 & B00001101 X00001100 X12 |&#xff08;有1为1&#xff09; A00111100 | B00001101 X00111101 X61 ^&#xff08;不同为1&#xff09; A00111100 ^ B00001101 X00110001 X49 ~&…...

selenium环境搭建

文章目录 1、下载谷歌浏览器2、下载谷歌驱动 1、下载谷歌浏览器 浏览器下载完成后&#xff0c;在任务管理器中禁止浏览器的自动更新。因为驱动版本必须和浏览器一致&#xff0c;如果浏览器更新了&#xff0c;驱动就用不起了。 2、下载谷歌驱动 谷歌驱动需要和谷歌浏览器版本…...

Python-OpenCV中的图像处理-霍夫变换

Python-OpenCV中的图像处理-霍夫变换 霍夫变换霍夫直线变换霍夫圆环变换 霍夫变换 霍夫(Hough)变换在检测各种形状的技术中非常流行&#xff0c;如果要检测的形状可以用数学表达式描述&#xff0c;就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使…...

最强自动化测试框架Playwright(10)- 截图

截图 捕获屏幕截图并将其保存到文件中&#xff1a; page.screenshot(path"screenshot.png")可将页面截图保存为screen.png import osfrom playwright.sync_api import Playwright, expect, sync_playwrightdef run(playwright: Playwright) -> None:browser p…...

SQL常见命令语句

1.连接数据库 mysql (-h IP) -u root -p 密码2.查看数据库 show databases3.使用数据库 use db_name4.查看表 show tables [from db_name]5.查看表结构 desc tb_name6.创建、删除、选择数据库 create database db_namedrop database db_nameuse db_name7.数据类型 参考链…...

Android Framework解析——WMS原理

作者&#xff1a;bobby_developer 1. WMS原理&#xff1a;WMS角色与实例化过程 window:它是一个抽象类&#xff0c;具体实现类为 PhoneWindow &#xff0c;它对 View 进行管理。Window是View的容器&#xff0c;View是Window的具体表现内容&#xff1b; windowManager:是一个接…...

python编辑器安装与配置,python用哪个编辑器好用

大家好&#xff0c;给大家分享一下python编辑器pycharm安装教程&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 哪些python的编程软件值得推荐&#xff1f; 编写python源代码的软件.首推的Pycharm。 PyCharm用于bai一般IDE具备的功能&…...

如何使用ElasticSearch存储和查询数据

1. 引言 在大多数的场景里&#xff0c;存储数据都是用MySQL这类关系型数据库&#xff0c;这类数据库的特点是数据存储安全性和一致性高&#xff0c;可以用于事务操作&#xff0c;但是随着数据量的增加&#xff0c;查询的速度也会随之降低&#xff0c;并且其扩展能力有限&#x…...

谈谈对Spring MVC的理解

问题分析&#xff1a; SpringMVC 是一种基于 Java 语言开发&#xff0c;实现了 Web MVC 设计模式&#xff0c;请求驱动类型 的轻量级 Web 框架。 SpringMVC采用了 MVC 架构模式的思想&#xff0c;通过把 Model&#xff0c;View&#xff0c;Controller 分离&#xff0c;将 Web 层…...

Shopify平台Fulfillment业务模块升级

上图是销售订单、发货单与配送之间的关系图&#xff0c;销售订单可以创建多个发货单&#xff0c;多个发货单(不同销售订单)可以合并在一个配送订单进行发货 接口请求错误记录: 1. The api_client does not have the required permission(s). 2. Required parameter missing or…...

使用 PyTorch 逐步检测单个对象

一、说明 在对象检测任务中&#xff0c;我们希望找到图像中对象的位置。我们可以搜索一种类型的对象&#xff08;单对象检测&#xff0c;如本教程所示&#xff09;或多个对象&#xff08;多对象检测&#xff09;。通常&#xff0c;我们使用边界框定义对象的位置。有几种方法可以…...

Node.js |(二)Node.js API:fs模块 | 尚硅谷2023版Node.js零基础视频教程

学习视频&#xff1a;尚硅谷2023版Node.js零基础视频教程&#xff0c;nodejs新手到高手 文章目录 &#x1f4da;文件写入&#x1f407;writeFile 异步写入&#x1f407;writeFileSync 同步写入&#x1f407;appendFile / appendFileSync 追加写入&#x1f407;createWriteStrea…...

Android 13 Hotseat定制化修改——002 hotseat图标数量修改

目录 一.背景 二.实践方案 一.背景 由于需求是需要自定义修改Hotseat&#xff0c;所以此篇文章是记录如何自定义修改hotseat的&#xff0c;应该可以覆盖大部分场景&#xff0c;修改点有修改hotseat布局方向&#xff0c;hotseat图标数量&#xff0c;hotseat图标大小&#xff0…...

Flask实现接口mock,安装及使用教程(一)

1、什么是接口mock 主要是针对单元测试的应用&#xff0c;它可以很方便的解除单元测试中各种依赖&#xff0c;大大的降低了编写单元测试的难度 2、什么是mock server 正常情况下&#xff1a;测试客户端——测试——> 被测系统 ——依赖——>外部服务依赖 在被测系统和…...

分立式BUCK电路原理与制作持续更新

目录 一、分立式BUCK电路总体原理图 二、BUCK电路与LDO的区别 三、BUCK电路为什么要加电感 四、BUCK电路要加续流二极管 五、BUCK电路导通与断开的回路 六、电源公式的中的几个表示方式 1、输入功率用Pin表示 2、输出功率用Po表示 3、电源的效率公式&#xff1a;电源的…...

2023年大数据与计算国际会议 (WBDC 2023)| EI、Scoups检索

会议简介 Brief Introduction 2023年大数据与计算国际会议&#xff08;WBDC 2023&#xff09; 会议时间&#xff1a;2023年11月17 -19日 召开地点&#xff1a;中国西安 大会官网&#xff1a;www.iwbdc.org 2023年大数据与计算国际会议&#xff08;WBDC 2023&#xff09;将围绕“…...

Grafana V10 告警推送 邮件

最近项目建设完成&#xff0c;一个城域网项目&#xff0c;相关zabbix和grafana展示已经完&#xff0c;想了想&#xff0c;不想天天看平台去盯网络监控平台&#xff0c;索性对告警进行分类调整&#xff0c;增加告警的推送&#xff0c;和相关部门的提醒&#xff0c;其他部门看不懂…...

【OpenCV常用函数:视频捕获函数】cv2.VideoCapture

文章目录 1、cv2.VideoCapture() 1、cv2.VideoCapture() 输入视频路径&#xff0c;创建VideoCapture的对象 cv2.VideoCapture(filename) filename: 视频文件的路径视频名扩展名该类的函数有&#xff1a; 1&#xff09;video.isOpened: 检查视频捕获是否成功 2&#xff09;vid…...

OptaPlanner笔记2

1.5.3 使用maven 修改pom.xml 导入optaplanner-bom以避免为每一个依赖项重复添加版本号 <project>...<dependencyManagement><dependencies><dependency><groupId>org.optaplanner</groupId><artifactId>optaplanner-bom</art…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...