当前位置: 首页 > news >正文

Python 中的机器学习简介:多项式回归

一、说明

        多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。

二、多项式回归

        多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回归的子集。

        请注意,X₀ 是偏差的一列;这允许在第一篇文章中讨论的广义公式。使用上述等式,每个“自变量”都可以被视为 X₁ 的指数版本。

        这允许从多元线性回归使用相同的模型,因为只需要识别每个变量的系数。可以创建一个简单的三阶多项式模型作为示例。其等式如下:

        模型、梯度下降和 MSE 的广义函数可用于前面的文章:

# line of best fit
def model(w, X):"""Inputs:w: array of weights | (num features, 1)X: array of inputs  | (n samples, num features)Output:returns the output of X@w | (n samples, 1)"""return torch.matmul(X, w)
# mean squared error (MSE)
def MSE(Yhat, Y):"""Inputs:Yhat: array of predictions | (n samples, 1)Y: array of expected outputs | (n samples, 1)Output:returns the loss of the model, which is a scalar"""return torch.mean((Yhat-Y)**2) # mean((error)^2)
# optimizer
def gradient_descent(w):"""Inputs:w: array of weights | (num features, 1)Global Variables / Constants:X: array of inputs  | (n samples, num features)Y: array of expected outputs | (n samples, 1)lr: learning rate to scale the gradientOutput:returns the updated weights""" n = X.shape[0]return w - (lr * 2/n) * (torch.matmul(-Y.T, X) + torch.matmul(torch.matmul(w.T, X.T), X)).reshape(w.shape)

三、创建数据

        现在,所需要的只是一些用于训练模型的数据。可以使用“蓝图”功能,并且可以添加随机性。这遵循与前面文章相同的方法。蓝图如下所示:

        可以创建大小为 (800, 4) 的训练集和大小为 (200, 4) 的测试集。请注意,除偏差外,每个特征都是第一个特征的指数版本。

import torchtorch.manual_seed(5)
torch.set_printoptions(precision=2)# features
X0 = torch.ones((1000,1))
X1 = (100*(torch.rand(1000) - 0.5)).reshape(-1,1) # generates 1000 random numbers from -50 to 50
X2, X3 = X1**2, X1**3
X = torch.hstack((X0,X1,X2,X3))# normal distribution with a mean of 0 and std of 8
normal = torch.distributions.Normal(loc=0, scale=8)# targets
Y = (3*X[:,3] + 2*X[:,2] + 1*X[:,1] + 5 + normal.sample(torch.ones(1000).shape)).reshape(-1,1)# train, test
Xtrain, Xtest = X[:800], X[800:]
Ytrain, Ytest = Y[:800], Y[800:]

        定义初始权重后,可以使用最佳拟合线绘制数据。

torch.manual_seed(5)
w = torch.rand(size=(4, 1))
w
tensor([[0.83],[0.13],[0.91],[0.82]])
import matplotlib.pyplot as pltdef plot_lbf():"""Output:prints the line of best fit in comparison to the train and test data"""# plot the train and test setsplt.scatter(Xtrain[:,1],Ytrain,label="train")plt.scatter(Xtest[:,1],Ytest,label="test")# plot the line of best fitX1_plot = torch.arange(-50, 50.1,.1).reshape(-1,1) X2_plot, X3_plot = X1_plot**2, X1_plot**3X0_plot = torch.ones(X1_plot.shape)X_plot = torch.hstack((X0_plot,X1_plot,X2_plot,X3_plot))plt.plot(X1_plot.flatten(), model(w, X_plot).flatten(), color="red", zorder=4)plt.xlim(-50, 50)plt.xlabel("$X$")plt.ylabel("$Y$")plt.legend()plt.show()plot_lbf()
图片来源:作者

四、训练模型

        为了部分最小化成本函数,可以使用 5e-11 和 500,000 epoch 的学习率与梯度下降一起使用。

lr = 5e-11
epochs = 500000# update the weights 1000 times
for i in range(0, epochs):# update the weightsw = gradient_descent(w)# print the new values every 10 iterationsif (i+1) % 100000 == 0:print("epoch:", i+1)print("weights:", w)print("Train MSE:", MSE(model(w,Xtrain), Ytrain))print("Test MSE:", MSE(model(w,Xtest), Ytest))print("="*10)plot_lbf()
epoch: 100000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.87)
Test MSE: tensor(162.55)
==========
epoch: 200000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.52)
Test MSE: tensor(162.22)
==========
epoch: 300000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.19)
Test MSE: tensor(161.89)
==========
epoch: 400000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(162.85)
Test MSE: tensor(161.57)
==========
epoch: 500000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(162.51)
Test MSE: tensor(161.24)
==========
图片来源:作者

        即使有 500,000 个 epoch 和极小的学习率,该模型也无法识别前两个权重。虽然当前的解决方案非常准确,MSE为161.24,但可能需要数百万个epoch才能完全最小化它。这是多项式回归梯度下降的局限性之一。

五、正态方程

        作为替代方案,可以使用第二篇文章中的正态方程直接计算优化权重:

def NormalEquation(X, Y):"""Inputs:X: array of input values | (n samples, num features)Y: array of expected outputs | (n samples, 1)Output:returns the optimized weights | (num features, 1)"""return torch.inverse(X.T @ X) @ X.T @ Yw = NormalEquation(Xtrain, Ytrain)
w
tensor([[4.57],[0.98],[2.00],[3.00]])

        正态方程能够立即识别每个权重的正确值,并且每组的MSE比梯度下降时低约100点:

MSE(model(w,Xtrain), Ytrain), MSE(model(w,Xtest), Ytest)
(tensor(60.64), tensor(63.84))

六、结论

        通过实现简单线性、多重线性和多项式回归,接下来的两篇文章将介绍套索和岭回归。这些类型的回归在机器学习中引入了两个重要概念:过拟合和正则化。

 参考文章:

亨特·菲利普斯

相关文章:

Python 中的机器学习简介:多项式回归

一、说明 多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。 二、多项式回归 多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回归的子集。…...

docker 容器中执行命令出现错误: 13: Permission denied

错误 13: Permission denied [rootVM-32-11-tencentos ~]# docker exec -it kibana1 /bin/bash kibana76c20c215dcb:~$ apt-get install vi E: Could not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission denied) E: Unable to acquire the dpkg frontend…...

JavaWeb学习|JavaBean;MVC三层架构;Filter;Listener

1.JavaBean 实体类 JavaBean有特定的写法: 必须要有一个无参构造 属性必须私有化。 必须有对应的get/set方法 用来和数据库的字段做映射 ORM; ORM:对象关系映射 表--->类 字段-->属性 行记录---->对象 2.<jsp&#xff1a;useBean 标签 3. MVC三层架构 4. Filter …...

arx 外部参照文件(XREF)的添加、删除、卸载和重载_objectarx

添加参照 CString strFileName;int nIndex = strFilePath.ReverseFind(\\);if (nIndex != -1){strFileName = strFilePath.Right(strFilePath....

【博客699】docker daemon预置iptables剖析

docker daemon预置iptables剖析 没有安装docker的机器&#xff1a;iptables为空&#xff0c;且每个链路的默认policy均为ACCEPT [root~]# iptables-save[root ~]# iptables -t raw -nvL Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)pkts bytes target prot opt …...

Golang 中的交叉编译详解

Golang 中的交叉编译 在 Golang 中&#xff0c;交叉编译指的是在同一台机器上生成针对不同操作系统或硬件架构的二进制文件。这在开发跨平台应用或构建特定平台的发布版本时非常有用。 交叉编译 Golang 程序的基本步骤如下&#xff1a; 指定目标操作系统和工具链并设置对应的…...

Python中的诡异事:不可见字符!

文章目录 前言1. 起因2. 调查3. 高能4. 释惑 前言 今天分享一件很诡异的事情&#xff0c;我写代码的时候遇到了不可见的字符&#xff01;&#xff01;&#xff01; 1. 起因 今天在使用pipreqs导出项目中所依赖的库时突然报错了&#xff1a; pipreqs . --encodingutf-8 --forc…...

【uniapp】uniapp使用微信开发者工具制作骨架屏:

文章目录 一、效果&#xff1a;二、过程&#xff1a; 一、效果&#xff1a; 二、过程&#xff1a; 【1】微信开发者工具打开项目&#xff0c;生成骨架屏&#xff0c;将wxml改造为vue页面组件&#xff0c;并放入样式 【2】页面使用骨架屏组件 【3】改造骨架屏&#xff08;去除…...

【UE4 RTS】06-Camera Edge Scroll

前言 本篇实现的效果是当玩家将鼠标移至屏幕边缘时&#xff0c;视野会相应的上下左右移动 效果 步骤 1. 打开玩家控制器“RTS_PlayerController_BP”&#xff0c;在类默认值中设置如下选项 新建一个宏&#xff0c;命名为“EdgeSroll”&#xff0c; 添加两个输入和三个输出&a…...

无涯教程-Perl - length函数

描述 此函数返回EXPR值的长度(以字符为单位),如果未指定,则返回$_。如果要确定相应的大小,请在数组或哈希上使用标量context。 语法 以下是此函数的简单语法- length EXPRlength返回值 此函数返回字符串的大小。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perl$o…...

怎样在 CentOS 里下载 RPM 包及其所有依赖包

前几天我尝试去创建一个仅包含我们经常在 CentOS 7 下使用的软件的本地仓库。当然,我们可以使用 curl 或者 wget 下载任何软件包,然而这些命令并不能下载要求的依赖软件包。你必须去花一些时间而且手动的去寻找和下载被安装的软件所依赖的软件包。然而,我们并不是必须这样。…...

在Ubuntu上使用NFS挂载

假设要把192.16.2.101服务器上的 /home/sharedata 挂载到192.16.2.102服务器上的 /home/receive_data 一、服务端 1、安装NFS服务端 sudo apt-get install nfs-kernel-server 2、修改NFS挂载配置文件 sudo vim /etc/exports 在文件中输入 /home/sharedata 192.16.2.102(…...

复现海康威视综合安防管理平台artemis接口Spring boot heapdump内存泄露漏洞

目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现 一、漏洞描述 HIKVISION iSecure Center综合安防管理平台是一套“集成化”、“智能化”的平台,通过接入视频监控、一卡通...

哈希unordered系列介绍(上)

一.Unordered_map,Unordered_set介绍 在之前我们已经介绍过set,map,multiset等等关联式容器&#xff0c;它们的底层是红黑树进行模拟实现的&#xff0c;在查询时效率可达到 l o g 2 N log_2 N log2​N&#xff0c;即最差情况下需要比较红黑树的高度次&#xff0c;当树中的节点…...

MySQL随心记第二篇

一、正则表达式篇&#xff1a; regular expression--> regexp 元字符: . : 单个的任意字符&#xff08;默认不包含换行&#xff09; \d:数字: 0-9 补集:\D \w:ascil:数字&#xff0c;大写字母&#xff0c;小写字母&#xff0c;以及下划线 unicode: 数字&#xff0c;大…...

0001nginx简介、相关模型与原理

文章目录 一. 什么是Nginx二. ngnix的一些模型1、nginx的进程模型2、worker的抢占&#xff08;锁&#xff09;机制模型3. nginx事件处理模型 三. nginx加载静态资源的过程 一. 什么是Nginx Nginx是一个高性能HTTP反向代理服务器&#xff0c;以下是nginx的相关能力 反向代理&am…...

elasticsearch简单入门语法

基本操作 创建不同的分词器 ik_smart&#xff1a; 极简分词 &#xff1b; ik_max_word: 最细力再度分词 基本的rest命令 methodurl地址描述PUTlocalhost:9200/索引名称/类型名称/文档id创建文档&#xff08;指定文档id&#xff09;POSTlocalhost:9200/索引名称/类型名称创建文…...

Python自动化测试用例:如何优雅的完成Json格式数据断言

目录 前言 直接使用 优化 封装 小结 进阶 总结 资料获取方法 前言 记录Json断言在工作中的应用进阶。 直接使用 很早以前写过一篇博客&#xff0c;记录当时获取一个多级json中指定key的数据&#xff1a; #! /usr/bin/python # coding:utf-8 """ aut…...

阿里云对象存储服务OSS

1、引依赖 <dependency><groupId>com.aliyun.oss</groupId><artifactId>aliyun-sdk-oss</artifactId><version>3.15.1</version> </dependency> <dependency><groupId>javax.xml.bind</groupId><artifa…...

第三节:在WORD为应用主窗口下关闭EXCEL的操作(1)

【分享成果&#xff0c;随喜正能量】夏日里的遗憾&#xff0c;一定都会被秋风温柔化解。吃素不难&#xff0c;难于不肯捨贪口腹之心。若不贪口腹&#xff0c;有何吃素之不便乎。虽吃华素&#xff0c;不吃素日&#xff0c;亦须少吃。以一切物类&#xff0c;皆是贪生怕死&#xf…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...