Python 中的机器学习简介:多项式回归
一、说明
多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。
二、多项式回归
多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回归的子集。
![]()
请注意,X₀ 是偏差的一列;这允许在第一篇文章中讨论的广义公式。使用上述等式,每个“自变量”都可以被视为 X₁ 的指数版本。
![]()
![]()
![]()
这允许从多元线性回归使用相同的模型,因为只需要识别每个变量的系数。可以创建一个简单的三阶多项式模型作为示例。其等式如下:
![]()
![]()
![]()
![]()
模型、梯度下降和 MSE 的广义函数可用于前面的文章:
# line of best fit
def model(w, X):"""Inputs:w: array of weights | (num features, 1)X: array of inputs | (n samples, num features)Output:returns the output of X@w | (n samples, 1)"""return torch.matmul(X, w)
# mean squared error (MSE)
def MSE(Yhat, Y):"""Inputs:Yhat: array of predictions | (n samples, 1)Y: array of expected outputs | (n samples, 1)Output:returns the loss of the model, which is a scalar"""return torch.mean((Yhat-Y)**2) # mean((error)^2)
# optimizer
def gradient_descent(w):"""Inputs:w: array of weights | (num features, 1)Global Variables / Constants:X: array of inputs | (n samples, num features)Y: array of expected outputs | (n samples, 1)lr: learning rate to scale the gradientOutput:returns the updated weights""" n = X.shape[0]return w - (lr * 2/n) * (torch.matmul(-Y.T, X) + torch.matmul(torch.matmul(w.T, X.T), X)).reshape(w.shape)
三、创建数据
现在,所需要的只是一些用于训练模型的数据。可以使用“蓝图”功能,并且可以添加随机性。这遵循与前面文章相同的方法。蓝图如下所示:
![]()
可以创建大小为 (800, 4) 的训练集和大小为 (200, 4) 的测试集。请注意,除偏差外,每个特征都是第一个特征的指数版本。
import torchtorch.manual_seed(5)
torch.set_printoptions(precision=2)# features
X0 = torch.ones((1000,1))
X1 = (100*(torch.rand(1000) - 0.5)).reshape(-1,1) # generates 1000 random numbers from -50 to 50
X2, X3 = X1**2, X1**3
X = torch.hstack((X0,X1,X2,X3))# normal distribution with a mean of 0 and std of 8
normal = torch.distributions.Normal(loc=0, scale=8)# targets
Y = (3*X[:,3] + 2*X[:,2] + 1*X[:,1] + 5 + normal.sample(torch.ones(1000).shape)).reshape(-1,1)# train, test
Xtrain, Xtest = X[:800], X[800:]
Ytrain, Ytest = Y[:800], Y[800:]
定义初始权重后,可以使用最佳拟合线绘制数据。
torch.manual_seed(5)
w = torch.rand(size=(4, 1))
w
tensor([[0.83],[0.13],[0.91],[0.82]])
import matplotlib.pyplot as pltdef plot_lbf():"""Output:prints the line of best fit in comparison to the train and test data"""# plot the train and test setsplt.scatter(Xtrain[:,1],Ytrain,label="train")plt.scatter(Xtest[:,1],Ytest,label="test")# plot the line of best fitX1_plot = torch.arange(-50, 50.1,.1).reshape(-1,1) X2_plot, X3_plot = X1_plot**2, X1_plot**3X0_plot = torch.ones(X1_plot.shape)X_plot = torch.hstack((X0_plot,X1_plot,X2_plot,X3_plot))plt.plot(X1_plot.flatten(), model(w, X_plot).flatten(), color="red", zorder=4)plt.xlim(-50, 50)plt.xlabel("$X$")plt.ylabel("$Y$")plt.legend()plt.show()plot_lbf()
四、训练模型
为了部分最小化成本函数,可以使用 5e-11 和 500,000 epoch 的学习率与梯度下降一起使用。
lr = 5e-11
epochs = 500000# update the weights 1000 times
for i in range(0, epochs):# update the weightsw = gradient_descent(w)# print the new values every 10 iterationsif (i+1) % 100000 == 0:print("epoch:", i+1)print("weights:", w)print("Train MSE:", MSE(model(w,Xtrain), Ytrain))print("Test MSE:", MSE(model(w,Xtest), Ytest))print("="*10)plot_lbf()
epoch: 100000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.87)
Test MSE: tensor(162.55)
==========
epoch: 200000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.52)
Test MSE: tensor(162.22)
==========
epoch: 300000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.19)
Test MSE: tensor(161.89)
==========
epoch: 400000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(162.85)
Test MSE: tensor(161.57)
==========
epoch: 500000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(162.51)
Test MSE: tensor(161.24)
==========
即使有 500,000 个 epoch 和极小的学习率,该模型也无法识别前两个权重。虽然当前的解决方案非常准确,MSE为161.24,但可能需要数百万个epoch才能完全最小化它。这是多项式回归梯度下降的局限性之一。
五、正态方程
作为替代方案,可以使用第二篇文章中的正态方程直接计算优化权重:
def NormalEquation(X, Y):"""Inputs:X: array of input values | (n samples, num features)Y: array of expected outputs | (n samples, 1)Output:returns the optimized weights | (num features, 1)"""return torch.inverse(X.T @ X) @ X.T @ Yw = NormalEquation(Xtrain, Ytrain)
w
tensor([[4.57],[0.98],[2.00],[3.00]])
正态方程能够立即识别每个权重的正确值,并且每组的MSE比梯度下降时低约100点:
MSE(model(w,Xtrain), Ytrain), MSE(model(w,Xtest), Ytest)
(tensor(60.64), tensor(63.84))
六、结论
通过实现简单线性、多重线性和多项式回归,接下来的两篇文章将介绍套索和岭回归。这些类型的回归在机器学习中引入了两个重要概念:过拟合和正则化。
参考文章:
亨特·菲利普斯
相关文章:
Python 中的机器学习简介:多项式回归
一、说明 多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。 二、多项式回归 多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回归的子集。…...
docker 容器中执行命令出现错误: 13: Permission denied
错误 13: Permission denied [rootVM-32-11-tencentos ~]# docker exec -it kibana1 /bin/bash kibana76c20c215dcb:~$ apt-get install vi E: Could not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission denied) E: Unable to acquire the dpkg frontend…...
JavaWeb学习|JavaBean;MVC三层架构;Filter;Listener
1.JavaBean 实体类 JavaBean有特定的写法: 必须要有一个无参构造 属性必须私有化。 必须有对应的get/set方法 用来和数据库的字段做映射 ORM; ORM:对象关系映射 表--->类 字段-->属性 行记录---->对象 2.<jsp:useBean 标签 3. MVC三层架构 4. Filter …...
arx 外部参照文件(XREF)的添加、删除、卸载和重载_objectarx
添加参照 CString strFileName;int nIndex = strFilePath.ReverseFind(\\);if (nIndex != -1){strFileName = strFilePath.Right(strFilePath....
【博客699】docker daemon预置iptables剖析
docker daemon预置iptables剖析 没有安装docker的机器:iptables为空,且每个链路的默认policy均为ACCEPT [root~]# iptables-save[root ~]# iptables -t raw -nvL Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)pkts bytes target prot opt …...
Golang 中的交叉编译详解
Golang 中的交叉编译 在 Golang 中,交叉编译指的是在同一台机器上生成针对不同操作系统或硬件架构的二进制文件。这在开发跨平台应用或构建特定平台的发布版本时非常有用。 交叉编译 Golang 程序的基本步骤如下: 指定目标操作系统和工具链并设置对应的…...
Python中的诡异事:不可见字符!
文章目录 前言1. 起因2. 调查3. 高能4. 释惑 前言 今天分享一件很诡异的事情,我写代码的时候遇到了不可见的字符!!! 1. 起因 今天在使用pipreqs导出项目中所依赖的库时突然报错了: pipreqs . --encodingutf-8 --forc…...
【uniapp】uniapp使用微信开发者工具制作骨架屏:
文章目录 一、效果:二、过程: 一、效果: 二、过程: 【1】微信开发者工具打开项目,生成骨架屏,将wxml改造为vue页面组件,并放入样式 【2】页面使用骨架屏组件 【3】改造骨架屏(去除…...
【UE4 RTS】06-Camera Edge Scroll
前言 本篇实现的效果是当玩家将鼠标移至屏幕边缘时,视野会相应的上下左右移动 效果 步骤 1. 打开玩家控制器“RTS_PlayerController_BP”,在类默认值中设置如下选项 新建一个宏,命名为“EdgeSroll”, 添加两个输入和三个输出&a…...
无涯教程-Perl - length函数
描述 此函数返回EXPR值的长度(以字符为单位),如果未指定,则返回$_。如果要确定相应的大小,请在数组或哈希上使用标量context。 语法 以下是此函数的简单语法- length EXPRlength返回值 此函数返回字符串的大小。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perl$o…...
怎样在 CentOS 里下载 RPM 包及其所有依赖包
前几天我尝试去创建一个仅包含我们经常在 CentOS 7 下使用的软件的本地仓库。当然,我们可以使用 curl 或者 wget 下载任何软件包,然而这些命令并不能下载要求的依赖软件包。你必须去花一些时间而且手动的去寻找和下载被安装的软件所依赖的软件包。然而,我们并不是必须这样。…...
在Ubuntu上使用NFS挂载
假设要把192.16.2.101服务器上的 /home/sharedata 挂载到192.16.2.102服务器上的 /home/receive_data 一、服务端 1、安装NFS服务端 sudo apt-get install nfs-kernel-server 2、修改NFS挂载配置文件 sudo vim /etc/exports 在文件中输入 /home/sharedata 192.16.2.102(…...
复现海康威视综合安防管理平台artemis接口Spring boot heapdump内存泄露漏洞
目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现 一、漏洞描述 HIKVISION iSecure Center综合安防管理平台是一套“集成化”、“智能化”的平台,通过接入视频监控、一卡通...
哈希unordered系列介绍(上)
一.Unordered_map,Unordered_set介绍 在之前我们已经介绍过set,map,multiset等等关联式容器,它们的底层是红黑树进行模拟实现的,在查询时效率可达到 l o g 2 N log_2 N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点…...
MySQL随心记第二篇
一、正则表达式篇: regular expression--> regexp 元字符: . : 单个的任意字符(默认不包含换行) \d:数字: 0-9 补集:\D \w:ascil:数字,大写字母,小写字母,以及下划线 unicode: 数字,大…...
0001nginx简介、相关模型与原理
文章目录 一. 什么是Nginx二. ngnix的一些模型1、nginx的进程模型2、worker的抢占(锁)机制模型3. nginx事件处理模型 三. nginx加载静态资源的过程 一. 什么是Nginx Nginx是一个高性能HTTP反向代理服务器,以下是nginx的相关能力 反向代理&am…...
elasticsearch简单入门语法
基本操作 创建不同的分词器 ik_smart: 极简分词 ; ik_max_word: 最细力再度分词 基本的rest命令 methodurl地址描述PUTlocalhost:9200/索引名称/类型名称/文档id创建文档(指定文档id)POSTlocalhost:9200/索引名称/类型名称创建文…...
Python自动化测试用例:如何优雅的完成Json格式数据断言
目录 前言 直接使用 优化 封装 小结 进阶 总结 资料获取方法 前言 记录Json断言在工作中的应用进阶。 直接使用 很早以前写过一篇博客,记录当时获取一个多级json中指定key的数据: #! /usr/bin/python # coding:utf-8 """ aut…...
阿里云对象存储服务OSS
1、引依赖 <dependency><groupId>com.aliyun.oss</groupId><artifactId>aliyun-sdk-oss</artifactId><version>3.15.1</version> </dependency> <dependency><groupId>javax.xml.bind</groupId><artifa…...
第三节:在WORD为应用主窗口下关闭EXCEL的操作(1)
【分享成果,随喜正能量】夏日里的遗憾,一定都会被秋风温柔化解。吃素不难,难于不肯捨贪口腹之心。若不贪口腹,有何吃素之不便乎。虽吃华素,不吃素日,亦须少吃。以一切物类,皆是贪生怕死…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
