当前位置: 首页 > news >正文

大模型在金融医疗、生命系统和物理仿真领域的创新应用探索

点击蓝字

0f0a0d2c602036d79bc00e17fd046eea.jpeg

关注我们

AI TIME欢迎每一位AI爱好者的加入!

在当今迅速发展的科技领域,大模型技术正日益成为金融医疗、生命系统和物理仿真等领域中的重要工具。2023年6月16日,AI TIME举办的青年科学家大模型专场活动邀请了国防科技大学理学院数学系统计与运筹学讲师王琦、西湖大学工学院人工智能方向助理教授吴泰霖、浙江大学国际联合学院助理教授孟祥明、中佛罗里达大学计算机系助理教授及计算安全与隐私中心成员娄钱,四位嘉宾深入探讨了大模型技术在金融医疗、生命系统和物理仿真等领域中的应用案例、技术挑战和未来发展趋势,展示了这一革命性技术对各领域带来的深刻影响。

王琦:AIGC技术的发展溯源与前景展望

近些年,人工智能生成内容(AIGC)技术受到了学术界和工业界的广泛重视,此类生成式AI技术的涌现提升了社会生产效率,为通用人工智能(Artificial General Intelligence)技术开发的难题提供了新的解决思路。王琦老师在报告中首先溯源AIGC技术的发展,随着Diffusion Model、Transformer等生成式系列结构,生成式AI模型的结构趋向深度化和层次化,效果越来越好。王老师在报告的第二部分探讨了生成式AI理论研究的相关问题,并对深度生成模型的结构设计、优化策略、效果评估及应用部署进行展望。他将生成式AI存在研究热点概括为深度生成模型的可解释性,生成数据的多样性与真实性,结构化数据的不变性与等变性,大规模优化的计算复杂性与深度生成模型的跨任务智能决策,而解决这些科学问题涉及的理论工具包括统计学、代数学、决策论、信息论与优化理论等,未来利用这些理论有可能推动AIGC的研究发展。

吴泰霖:AI用于多分辨率科学仿真和设计

系统的多分辨率是科学仿真的研究中存在的一个重要挑战。在物理、流体、天气、材料、核聚变等很多领域,系统的一小部分变化非常剧烈,需要非常精细的分辨率,而大部分则变化缓慢。为解决上述问题,吴泰霖老师在报告中介绍了一种LAMP架构并通过实验数据分析其良好的性能。LAMP通过两个图神经网络进行特征的学习,其中一个图神经网络学习系统随时间的演化,另一个则通过强化学习优化系统内各个部分的空间分辨率从而判断误差和成本是否在可控范围内。此外,吴老师还提出了AI用于科学仿真存在的问题,包括如何更好地解决多尺度问题以及提高其可信度等。基于科学仿真,我们可以进行系统的反向设计,从而优化给定的目标,吴老师在报告的第二部分还详细阐述了AI用于反向设计在各科学、工程关键领域的重要应用、开放问题和可能方向,并欢迎大家一起进行深入探索。

孟祥明:基于扩散模型的量化压缩感知

我们目前正处于大数据时代,很多问题会涉及信号的获取,但是大规模数据的获取会非常消耗资源,那么如何使用少量的观测来获取信号和数据是研究的一大难题。孟祥明老师在报告中首先简明地阐述了压缩感知的主要思想,在信号传输和存储之前先对其进行压缩,在接收端收到数据后进行解压缩,简单讲就是在信号采样的过程中进行压缩。孟老师介绍了一种名为QCS-SGM的高效算法,该算法利用基于分数的生成模型(SGM)作为隐式先验,但该算法受限于行正交传感矩阵,会使得似然得分的计算变得很困难。为了突破此限制,孟老师在报告中又介绍了QCS-SGM的高级变体——QCS-SGM+。它能够有效地处理一般矩阵,从贝叶斯推理角度计算似然得分,而广泛的实验也证明了QCS-SGM+在一般传感矩阵方面比QCS-SGM具有显著的优越性。

娄钱:探讨人工智能的安全与隐私问题

人工智能模型,尤其是深度学习模型,已经在广泛的领域得到了应用,但其隐私和安全问题仍然存在许多待解决的挑战。娄钱老师在报告中首先指出构建一个可靠的深度学习系统需要解决高效性、数据隐私和安全的问题,然后介绍了利用加密的方式对数据和模型隐私进行保护的方案。他列举了现实生活中数据隐私的实例如医疗数据、金融数据等,这些数据中往往会包含个人隐私信息,目前已有的研究中会利用全同态加密(FHE)、多方计算、差分隐私等多种隐私计算技术进行数据隐私的保护。人工智能模型在训练和推理过程中也有可能泄露训练数据的敏感信息,因此模型的安全性尤为重要。娄老师在报告中分别介绍了针对文本和视觉的后门攻击方法,他也表示我们需要探索更多的后门攻击方法,并提出相应的检测和去除策略,才能保护模型的安全性。

智能决策大模型在生命系统/机器人系统中部署的机遇与挑战

王琦:大模型目前已经可以很好地解决视觉包括自然语言方面的基础性问题。在生命系统方面,大模型可以针对不同情景下体质不同的人学习特征,从而制定个性化的治疗方案。大模型部署在生命系统或机器人系统中面临机遇的同时也面临着一些挑战。比如,真实数据的缺失以及数据的表征格式,其次是因果溯源的问题,第三是让机器人系统具备感知能力与推理能力。

孟祥明:大模型应用在医疗系统或是机器人系统中是面临诸多挑战的,首先需要巨大的计算机资源进行支撑;其次用于大模型训练的数据在收集过程中本身是存在偏见和不平衡的,这会影响最终的决策结果,因此如何保证大模型的公正性和可信度是一个较大的挑战;第三,在生命系统中采用安全的措施对于敏感信息的隐私保护也是一个难题;第四,利用大模型辅助决策会面临因果推理的难题,因而解决大模型的可解释性和可理解性也是一个较大的挑战。

娄钱:我比较关注的是大模型或是生成模型的安全隐私问题,未来如果能够对大模型的输入进行一些过滤或者提高大模型本身的推理能力和可解释性,将会是一个很大的进展。

大模型的安全隐患以及解决方案

特别是在医疗金融等高风险领域

娄钱:大模型现在有一些提示词的工程,那么设置好的提示词工程让训练的数据变得更少是现有的机遇。但同时也存在着一些问题,当出于保护隐私的动机去对提示词进行加密,能否保证性能的稳定性是一个挑战。我们可以通过差分隐私利用本地学习或联邦学习的方式去生成垂直领域的个性化提示词,从而防止隐私泄露。

孟祥明:大模型在医疗、金融等高风险领域的应用,除了面对技术问题,还有法律法规的制定,如何管理数据的应用及其产生的伦理,相关的政府、企业都应该形成一个相应的规范。

吴泰霖:大模型可以作为一种基础服务提供给各个机构,由研发机构训练好的基础模型作为初始状态,再分发给不同的公司进行不同类型数据的训练,这样数据就能保存在各个公司中,保证了数据的安全性。

王琦:大模型在训练完投入使用的过程中,数据是呈现一种增量态势的,所以它具备终身学习的特性。大模型会随着数据的更新而更新,这就涉及数据的偏差。倘若有不法机构试图从产生垃圾数据的角度攻击大模型,如何让大模型从数据的角度出发,保证数据公平从而实现安全性也是一个有趣的研究方向。

大模型在物理仿真中的机遇和挑战

吴泰霖:关于大模型是否应该应用于物理仿真,如果它能够用于不同形式不同情景下,只需更改基于学习的表示,减少训练时间,这是将其应用于物理仿真的优势。倘若将其应用于物理仿真的数据量远远超过大模型本身的数据量,这就是不值得的。大模型的训练需要很多数据,而物理仿真中数据很丰富,将这两者结合起来一起训练就是一个机遇。大模型在物理仿真中的挑战主要有两个:设计一个通用的表示使得其对不同的情形都能够适用、对于不同的物理情形能否使用同一个模型来模拟。

王琦:关于挑战,在做推理的时候如何从高维观测信号中推断真实的物理状态是一个比较困难的问题,因为在物理系统中机器人的各种状态信息都是需要通过传感器进行收集的。此外,对于大规模仿真的评估标准也是一大难题,在大规模仿真预算的情况下,仿真需要服务于智能决策,此时对仿真系统的实时性就提出了很高的要求。

孟祥明:物理仿真字面意义上即仿真现实的世界,我们希望它能够精确地重现现实世界的现象或者规律,那么大模型如何保证仿真的精度和稳定性是一大挑战。

娄钱:训练一个大模型的必要条件是数据、计算平台、训练算法,物理仿真的数据表达性更好,更接近现实。在计算方面,由于数据量是巨大的,而GPU又是有限的,所以设计高效训练的算法来缓解产能的限制是有必要的。

AI或者大模型还需要理论吗?

孟祥明:这个回答是肯定的。我们目前需要思考的是机器学习理论方面的研究方式是否存在一些问题或者研究范式。由于机器学习理论界的知识对AI或大模型的发展影响并不是那么大,所以会对理论产生质疑的声音。我认为理论的研究需要改变传统,随着大模型理论研究的深入,传统的理论无法达到精确分析刻画网络结构的效果,需要改变研究范式,用复杂的系统理论解释有限的现象。

娄钱:我个人是从工程角度做AI的相关研究,大部分人做理论研究的流程是先观察问题,再提出算法,而新算法的提出一般是先基于直觉,然后再验证算法的有效性,这也是我目前比较推崇的一种做研究的方式。

王琦:大模型的涌现能力是让人惊艳的它遍历了与人类复杂语言系统中的各种组合技巧,从这种角度看,生成式模型或者AI本质上是在做一种概率建模。除此之外,高效推断、高效采样、随机问题的优化、可解释性也是未来大模型研究中值得探讨的理论问题。

吴泰霖:大模型一定还需要理论。从Science for AI的角度来看,不同的学科都会有不同的方式和概念能够从基础理论的形式上,有可能对大模型进行更好的理解。

整理:陈研

审核:王琦、吴泰霖、孟祥明、娄钱

往期精彩文章推荐

47510a176ae066c25d63b0b6dfa56721.jpeg

记得关注我们呀!每天都有新知识!

 关于AI TIME 

AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。

迄今为止,AI TIME已经邀请了1100多位海内外讲者,举办了逾550场活动,超600万人次观看。

5aac3558d37d488c8059a3a1650e45a4.png

我知道你

在看

~

ef1b9fbede80eaace8ed703c4c305326.gif

点击 阅读原文 观看回放!

相关文章:

大模型在金融医疗、生命系统和物理仿真领域的创新应用探索

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 在当今迅速发展的科技领域,大模型技术正日益成为金融医疗、生命系统和物理仿真等领域中的重要工具。2023年6月16日,AI TIME举办的青年科学家大模型专场活动邀请了国防科技大学理学院数学…...

tensorflow / tensorflow-gpu cuda cudNN tensorRT 安装,启用显卡加速

tensorflow / tensorflow-gpu cuda cudNN tensorRT 安装,启用显卡加速 说明 Tensorflow-GPU 已被移除。请安装 tensorflow 。 tensorflow 通过 Nvidia CUDA 支持 GPU 加速操作。 自 2019 年 9月发布 的 TensorFlow2.1 以来,tensorFlow 和 tensorflow-GPU 一直是同…...

计算机视觉中的Transformer

几十年来,理论物理学家一直在努力提出一个宏大的统一理论。通过统一,指的是将被认为是完全不同的两个或多个想法结合起来,将它们的不同方面证明为同一基础现象。一个例子是在19世纪之前,电和磁被看作是无关的现象,但电…...

UVA-1601 万圣节后的早晨 题解答案代码 算法竞赛入门经典第二版

GitHub - jzplp/aoapc-UVA-Answer: 算法竞赛入门经典 例题和习题答案 刘汝佳 第二版 以三个点的当前位置作为状态,广度优先遍历,找到终点即为最短次数。 注意: 一次可以移动多个点,但是每个点只能移动一步。在同一次中&#xf…...

nacos 403错误

403错误 2023-08-12 18:04:55,418 [main] ERROR [com.alibaba.cloud.nacos.client.NacosPropertySourceBuilder:106] [trace,span,parent] - get data from Nacos error,dataId:gateway-server.yaml, com.alibaba.nacos.api.exception.NacosException: <html><body&…...

Python遥感图像处理应用篇(三十四):GDAL+Scikit-image+GLCM计算遥感图像纹理特征

1.运行环境 GDAL 3.4.2,Scikit-image最新版本0.19.3,numpy1.21.5 GDAL主要用于实现图像的读取和保存,Scikit-image和numpy对图像进行各种计算处理。 在调试好之前,由于numpy版本(1.16.6)低的问题,运行提示如下错误,更新为1.21.5版本之后就可以正常运行了,在此记录一…...

solr迁移到另一个solr中(docker单机)

背景介绍 solr数据迁移&#xff0c;或者版本升级&#xff0c;需要用到迁移&#xff0c;此处记录一下迁移方法以及过程中遇到的问题。我这边使用的是docker环境&#xff0c;非docker部署的应该也是一样的。 solr部署教程 准备工作 ● solrA 版本&#xff1a; 8.11.2 (已有so…...

谁能讲清楚Spark之Spark系统架构

### 整体架构概述 Spark与Hadoop MapReduce的结构类似,Spark也采用Master-Worker结构。如果一个Spark集群由4个节点组成,即1个Master节点和3个Worker节点,那么在部署Standalone版本后,Spark部署的系统架构图如图2.1所示。简单来说,Master节点负责管理应用和任务,…...

力扣:59. 螺旋矩阵 II(Python3)

题目&#xff1a; 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全…...

【electron】electron项目创建的方式:

文章目录 【1】npm init quick-start/electron&#xff08;推荐&#xff09;【2】 克隆仓库&#xff0c;快速启动【3】 通过脚手架搭建项目【4】 手动创建项目 【Electron官网】https://www.electronjs.org/zh/docs/latest/api/app 【1】npm init quick-start/electron&#xf…...

Vim学习(一)——基本命令与三种模式

写在前面&#xff0c; 致敬 8月3日&#xff0c;Vim创始人Bram Moolenaar去世&#xff0c;在此向老爷子致敬&#xff01;感谢他为这个世界带来的优秀编辑器Vim。 基本介绍 Vim全称叫Vi IMproved. 而vi则是Visual Interface的缩写&#xff0c;他们处理都是ASCII码字符数据&am…...

unity新输入系统的简单使用(New InputSystem)

1、在包管理器 unity注册表中下载安装InputSystem 2、给玩家添加组件PlayerInput&#xff0c;点击CreatAction,创建一个InputAct InputAct,这是玩家的输入文件&#xff0c;在里面可以设置玩家输入 3、使用 例如玩家控制角色移动 在InputAct中&#xff0c;默认已经设置好了移…...

Redis——特性介绍与应用场景

Redis特性介绍 In-memory data structrues 众所周知&#xff0c;MySQL是一种关系型数据库&#xff0c;其通过表的结构存储数据&#xff0c;就类似于建立了一个excel表格来存储数据。但是像视频这类数据并不适合存储在关系型数据库中&#xff0c;因此存在非关系型数据库——通…...

网络:路由

1. 路由器 路由器工作在三层&#xff0c;每个接口都处于不用的网段中&#xff0c;即不同的广播域。但大多情况下&#xff0c;两台路由器直接相连的接口是同一个广播域&#xff0c;即一个网段。 路由器具有判断网络地址和选择路径的功能&#xff0c;能在多网络互联的环境中&…...

利用三维内容编辑器制作VR交互课件,简单好用易上手

随着虚拟现实技术的不断发展&#xff0c;越来越多的教育机构开始尝试将其应用于教育教学中。然而&#xff0c;要实现这一目标并不容易&#xff0c;需要专业的技术支持和开发团队。 为了解决这一问题&#xff0c;广州华锐互动研发了三维内容编辑器&#xff0c;它是一种基于虚拟现…...

中国首款量子计算机操作系统本源司南 PilotOS正式上线

中国安徽省量子计算工程研究中心近日宣布&#xff0c;中国国产量子计算机操作系统本源司南 PilotOS 客户端正式上线。 如果把量子芯片比喻成人的“心脏”&#xff0c;那么量子计算机操作系统就相当于人的“大脑”&#xff0c;量子计算应用软件则是人的“四肢”。 据安徽省量子…...

基层社会治理平台建设方案[113页PPT]

导读&#xff1a;原文《基层社会治理平台建设方案[113页PPT]》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 完整版领取方式 完整版领取方式&#xff1a; 如需获取完…...

认识vite

一.了解vite的不同版本的更新 vite1版本是基于vue项目的&#xff0c;无法跨框架使用vite2可以跨框架&#xff08;vue2&#xff0c;vue3&#xff0c;react&#xff09;vite3模板变更&#xff1b;vite cli优化&#xff1b;import.meta.glob API变化&#xff1b;其他vite4主版本主…...

华为运动健康,十年创新天地宽

我听一位朋友讲过这样一个故事。某天早上&#xff0c;急诊科的医生迎来了一位患者&#xff0c;患者进来后直接说&#xff1a;“大夫&#xff0c;我房颤了。” 这位医生非常诧异&#xff0c;因为心脏房颤确实非常危急&#xff0c;但很多时候并没有明显的生理体征&#xff0c;患者…...

深度学习(37)—— 图神经网络GNN(2)

深度学习&#xff08;37&#xff09;—— 图神经网络GNN&#xff08;2&#xff09; 这一期主要是一些简单示例&#xff0c;针对不同的情况&#xff0c;使用的数据都是torch_geometric的内置数据集 文章目录 深度学习&#xff08;37&#xff09;—— 图神经网络GNN&#xff08…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...