自适应变异麻雀搜索算法及其Matlab实现


麻雀搜索算法( sparrow search algorithm,SSA) 是2020 年新提出的一种元启发式算法[1],它是受麻雀种群的觅食和反捕食行为启发,将搜索群体分为发现者、加入者和侦察者 3 部分,其相互分工寻找最优值,通过 19 个标准测试函数验证 SSA 算法在搜索精度,收敛速度,稳定性和避免局部最优值方面均优于现有算法。
麻雀搜索算法虽有以上优点,但如何调节各部分之间的控制参数,以及如何保证 3 部分之间可以较好的相互配合是一个必须考虑的问题。为解决这个问题,许多学者都进行了尝试,诸如混沌初始化、变异、混沌扰动、反向学习等方法都被引入其中,因此,本文也将尝试通过混沌初始化、变异、扰动等策略提高算法性能。
00 文章目录
1 麻雀搜索算法原理
2 自适应变异麻雀搜索算法
3 代码目录
4 算法性能
5 源码获取
6 总结
01 麻雀算法原理
感兴趣的读者可以自行搜索,这部分不再赘述
02 自适应变异麻雀搜索算法
2.1 Chebyshev 混沌映射
与其他群智能算法一样,原始 SSA 在求解复杂问题时,通过随机生成位置的方法初始化麻雀种群的个体位置,会导致种群的多样性低,对问题进行寻优的收敛速度比较慢。为了能够让麻雀个体在算法开始时有较高的全局搜索能力,需要让麻雀种群的位置均匀分布在整个问题的解空间内,因此使用混沌算子对麻雀种群进行初始化。
混沌作为一种非线性的自然现象,以其混沌序列具有遍历性、随机性等优点,被广泛用于优化搜索问题。利用混沌变量搜索显然比无序随机搜索具有更大的优越性[2]。
目前文献中常用的混沌扰动方程有Logistic映射和Tent映射等。Logistic映射在作者前面的文章中介绍过,由文献[3]可知Logistic映射的分布特点是:中间取值概率比较均匀,但在两端概率特别高,因此当全局最优点不在设计变量空间的两端时,对寻找最优点是不利的。而Tent混沌映射具有比Logistic混沌映射更好的遍历均匀性和更快的搜索速度。下图中展示了Logistic和Tent的混沌序列:

可以看到,Logistic混沌映射在边界区域取值概率明显更高,而Tent在可行域的取值概率更为均匀,因此若将Logistic混沌映射用于初始化种群时,其混沌序列的不均匀性会影响算法寻优的速度和精度。因此本文利用Tent的遍历性产生更为均匀分布的混沌序列,减少初始值对算法优化的影响。
Tent混沌映射的表达式如下:

分析Tent混沌迭代序列能够发现序列中存在小周期,并且存在不稳周期点. 为避免Tent混沌序列在迭代时落入小周期点和不稳定周期点,在原有的Tent 混沌映射表达式上引入一个随机变量rand(0, 1) /N ,则改进后的Tent混沌映射表达式如下[4]:
其中: N 是序列内粒子的个数。引入随机变量rand(0, 1) /N 不仅仍然保持了Tent混沌映射的随机性、遍历性、规律性,而且能够有效避免迭代落入小周期点和不稳定周期点内。本文算法引入的随机变量,既保持了随机性, 又将随机值控制在一定的范围之内,保证了Tent混沌 的规律性.根据Tent混沌映射的特性。改进的Tent混沌序列效果如下:
由图可知,改进后的Tent混沌映射其均匀性得到了提高,因此本文以改进Tent混沌性来代替麻雀搜索算法的随机初始化,以提高和改善初始种群在搜索空间上的分布质量,加强其全局搜索能力,从而提高算法求解精度。
2.2 趋优反向学习和混合变异扰动策略
对于迭代中的每一个麻雀个体,通过比较其适应度和平均适应度的大小关系将反向学习和混合变异扰动动态执行,增强算法的局部极值逃逸能力,改善其寻优效果。
2.2.1趋优反向学习
许多群体智能算法都采用随机算子对最优解进行扰动,这将导致收敛速度变慢。2005 年,Tizhoosh[6]提出反向学习策略(OBL)。OBL 提出对点的概念,用对立代替随机,在当前问题的解空间内寻找当前解的反向解,然后通过评估当前解和反向解的值,保留更好的解来取代原解中较差的解。因此本文对适应度较差个体执行趋优反向学习策略,提高种群质量的同时扩大算法的搜索区域,以补足算法的全局勘探能力。
首先对当前个体实施反向学习策略,得到反向个体:
其中: xlj 和 xuj 分别为第 j 维分量的下界和上界。
文献[6]指出反向个体优于当前个体的概率高于 50% ,考虑到仍有部分个体在反向学习之后个体质量有所降低,为了减少这种现象发生的概率并保持种群多样性,将求得的反向个 体和当前种群中最优个体进行凸组合,得到趋优反向个体:
其中: a为[0,1]的随机数; xgbest,j是当前种群全局最佳个体的第 j 维分量。
通过实施该策略,即使最初求得的反向个体相较于当前个体有所退化,但与当前种群中最优个体进行凸组合后,反向解还会接受一部分来自最优个体的特征,进一步提升了反向个体 的质量,同时也提高了算法的勘探能力、种群多样性和算法的收敛精度[7]。
2.2.2 混合变异算子
使用标准的柯西分布进行变异处理,可以帮助变异之后的麻雀个体迅速跳出局部极值。按照下式对当前麻雀个体进行变异:
高斯分布的点分布较为集中,该特征能够产生于原点相距较近的随机数,经过高斯变异之后的麻雀个体在位置进行很小的范围内扰动,可以提高变异个体的局部搜索能力。使用标准的高斯分布进行变异处理,按照下式对当前麻雀个体进行变异:
高斯-柯西混合变异算子通过线性权重系数将标准高斯变异得到的新麻雀个体位置和标准柯西变异得到的新麻雀个体位置生成一个全新的麻雀个体位置 Xtb_new。新麻雀个体的表达式为:

从上式可以看出,算法开始运行时,t值较小,柯西变异的权值较大,通过柯西变异获得较大步长,避免算法陷入局部最优解。随着算法不断运行,t 值较大, 高斯变异的权值较大,高斯变异杰出的局部搜索能力使得候选解在局部范围进行精确搜索,提高算法的寻优精度[8]。
2.3 发现者-加入者自适应调整策略
在 SSA算法中,发现者和加入者的数目比例保持不变,这会导致在迭代前期,发现者的数目相对较少,无法对全局进行充分的搜索,在迭代后期,发现者的数目又相对较多,此时已不需要更多的发现者进行全局搜索,而需要增加加入者的数量进行精确的局部搜索。为解决这个问题,提出发现者-加入者自适应调整策略,该策略在迭代前期,发现者可以占种群数目的多数,随着迭代次数的增加,发现者的数目自适应减少,加入者的数目自适应增加,逐步从全局搜索转为局部精确搜索,从整体上提高算法的收敛精度。发现者和加入者数目调整式为
式中:pNum 为发现者数目;sNum 为加入者数目;b为比例系数,用于控制发现者和加入者之间的数目;k为扰动偏离因子,对非线性递减值 r 进行扰动[9]。
2.4改进后的麻雀搜索算法
自适应变异麻雀搜索算法
(Adaptive Mutation-Sparrow Search optimization Algorithm, AM-SSA)流程图如下:

03 代码目录

其中,AM_SSA、SSA、PSO、GA都是可独立运行的主程序,而compare.m则可以比较不同算法的迭代曲线情况。
代码注释完整,其中部分AM_SSA程序如下:

04 算法性能
4.1 测试函数
为了能够验证自适应变异麻雀搜索算法对比粒子群算法、遗传算法以及麻雀搜索算法有更好的效果,本文选用4个CEC的标准测试函数Sphere、Griewank、Rastrigin、Rosenbrock对算法的寻优精度、跳出局部能力、全局寻优能力进行检验。4个函数的表达式如下:
4.1.1 Sphere函数

Sphere 函数的自变量𝑥𝑖的取值的范围:-100<𝑥𝑖<100;该函数存在唯一的一个全局的最小值,且当𝑥=(0,0,…,0)时,函数取得全局最小值 f1(x) = 0。选择该函数是对算法寻优的精度进行测试。
4.1.2 Griewank函数
Griewank 函数的自变量𝑥𝑖的取值的范围:-600<𝑥𝑖<600;该函数在整个的数 据分布含有大量局部极值,但是存在全局最小值 f2(x) = 0,是一种比较复杂的多模的复杂性问题,因此选择该函数目的是对算法是否跳出局部,能够继续搜索的 能力进行测试。

4.1.3 Rastrigin函数
Rastrigin 函数的自变量𝑥𝑖的取值的范围:-5.12<𝑥𝑖<5.12;在 x = ( 0,0 ,…, 0 ) 处的时候存在全局极小点 0,该函数是一个非线性的多峰值函数,存在大量的局部最小值,寻找全局极小值时有一定的困难,因此用此函数可以,对算法的全局寻优能力检验测试。
4.1.4 Rosenbrock函数
Rosenbrock 函数的自变量𝑥𝑖的取值的范围:-30<𝑥𝑖<30;该函数是一单峰函数, 存在全局极小值,位于一个类似开口向上的抛物线的最低点处,虽然能够比较容易找到,但是很难收敛到最低处,因此可以测试全局寻优的能力。
4.2 测试结果
Sphere函数

Griewank函数

Rastrigin函数

Rosenbrock函数

可以看到改进后的麻雀搜索算法后能够极大的提升其全局寻优的性能,无论是收敛速度还是精度都得到了极大的提高。这里的测试函数还是比较简单了,所以效果并没有太明显,在后面的文章中作者也会引入更复杂的测试函数来对算法性能进行验证。
05 源码获取
代码获取可关注我
06 总结
本文通过变异、混沌初始化、反向学习等策略对麻雀搜索算法进行了改进,并取得了不错的效果。对于算法的改进还可以通过混合其他智能算法来实现,后面作者也会这类方法进行更新,欢迎关注。
参考文献
[1] XUE J K, ShEN B. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[2] 张云鹏,左飞,翟正军.基于双Logistic变参数和Cheby-chev混沌映射的彩色图像密码算法[J.西北工业大学学报, 2010,28(4): 628-632.
[3] 江善和,王其申,汪巨浪.一种新型SkewTent映射的混沌混合优化算法[J.控制理论与应用, 2007,24(2): 269-273.
[4] 张娜,赵泽丹,包晓安,等.基于改进的Tent混沌万有引力搜索算法[J].控制与决策,2020,35(4):893-900.
[5] Tizhoosh H R. Opposition-based learning: a new scheme for machine intelligence[C] ∥International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), November 28-30, 2005, Vienna, Austria. New York: IEEE Press, 2005: 695-701.
[6] Tizhoosh H R. Opposition-based learning: a new scheme for machine intelligence[C]/ /Proc of International Conference on Computational Intelligence for Modeling,Control and Automation. Piscataway,NJ: IEEE Press,2005: 695-701.
[7] 左汶鹭,高岳林.基于随机邻域变异和趋优反向学习的差分进化算法[J].计算机应用研究,2023,40(07):2003-2012.DOI:10.19734/j.issn.1001-3695.2022.11.0785.
[8] 陈深,刘以安,宋海凌.改进麻雀算法在天波雷达定位中的应用[J].激光与光电子学进展,2023,60(10):350-357.
[9]唐延强,李成海,宋亚飞等.自适应变异麻雀搜索优化算法[J].北京航空航天大学学报,2023,49(03):681-692.DOI:10.13700/j.bh.1001-5965.2021.0282.
另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。
如果这篇文章对你有帮助或启发,可以点击右下角的赞 (ง •̀_•́)ง(不点也行)
相关文章:
自适应变异麻雀搜索算法及其Matlab实现
麻雀搜索算法( sparrow search algorithm,SSA) 是2020 年新提出的一种元启发式算法[1],它是受麻雀种群的觅食和反捕食行为启发,将搜索群体分为发现者、加入者和侦察者 3 部分,其相互分工寻找最优值,通过 19 个标准测试…...
ETL技术入门之ETLCloud初认识
首先ETL是什么? ETL代表“Extract, Transform, Load”,是一种用于数据集成和转换的过程。它在数据管理和分析中扮演着重要的角色。下面我们将分解每个步骤: Extract(抽取): 这一步骤涉及从多个不同的数据源…...
uniapp项目如何运行在微信小程序模拟器上
在HbuilderX中的小程序写完后自己一定要保存,否则会出不来效果 那么怎么让uniapp项目运行在微信小程序开发工具中呢 1 在hbuilderx中点击运行到小程序模拟器 2 然后在项目目录中会生成一个文件夹 在微信小程序开发软件中的工具>安全设置>打开端口 或者在微…...
数据挖掘全流程解析
数据挖掘全流程解析 数据指标选择 在这一阶段,使用直方图和柱状图的方式对数据进行分析,观察什么数据属性对于因变量会产生更加明显的结果。 如何绘制直方图和条形统计图 数据清洗 观察数据是否存在数据缺失或者离群点的情况。 数据异常的两种情况…...
详细介绍如何对音乐信息进行检索和音频节拍跟踪
在本文中,我们将了解节拍的概念,以及我们在尝试跟踪节拍时面临的挑战。然后我们将介绍解决问题的方法以及业界最先进的解决方案。 介绍 音乐就在我们身边。每当我们听到任何与我们的心灵和思想相关的音乐时,我们就会迷失其中。我们下意识地随着听到的节拍而敲击。您一定已…...
Java课题笔记~ HTTP协议(请求和响应)
Servlet最主要的作用就是处理客户端请求,并向客户端做出响应。为此,针对Servlet的每次请求,Web服务器在调用service()方法之前,都会创建两个对象 分别是HttpServletRequest和HttpServletResponse。 其中HttpServletRequest用于封…...
在x86下运行的Ubuntu系统上部署QEMU用于模拟RISC-V硬件环境
1.配置工作环境 sudo apt install gcc bison flex libncurses-dev ninja-build \pkg-config build-essential zlib1g-dev pkg-config libglib2.0-dev \binutils-dev libboost-all-dev autoconf libtool libssl-dev \libpixman-1-dev python-capstone virtualenv software-prop…...
网络爬虫选择代理IP的标准
Hey,小伙伴们!作为一家http代理产品供应商,我知道网络爬虫在选择代理IP时可能会遇到些问题,毕竟市面上有很多选择。别担心!今天我要给大家分享一些实用的建议,帮助你们选择适合网络爬虫的代理IP。一起来看看…...
RxJava 复刻简版之三,map 多次中转数据
案例代码:https://gitee.com/bobidali/lite-rx-java/commit/292e9227a5491f7ec6a07f395292ef8e6ff69290 RxJava 的调用第一步是封装了观察者接受了数据的处理,进一步就是使用 map 将数据操作传递给上下游 1、类似Observer.create 创建一个简单的观察者…...
06 Word2Vec模型(第一个专门做词向量的模型,CBOW和Skip-gram)
博客配套视频链接: https://space.bilibili.com/383551518?spm_id_from=333.1007.0.0 b 站直接看 配套 github 链接:https://github.com/nickchen121/Pre-training-language-model 配套博客链接:https://www.cnblogs.com/nickchen121/p/15105048.html 神经网络语言模型(NNL…...
Axure RP9小白安装教程
第一步: 打开:Axure中文学习网 第二步: 鼠标移动软件下载,点击Axure RP 9下载既可 第三步: 注意:Axure RP 9 MAC正式版为苹果版本,Axure RP 9 WIN正式版为Windows版本 中文汉化包ÿ…...
腾讯云CVM服务器2核2g1m带宽支持多少人访问?
腾讯云2核2g1m的服务器支持多少人同时访问?2核2g1m云服务器短板是在1M公网带宽上,腾讯云服务器网以网站应用为例,当大规模用户同时访问网站时,很大概率会卡在公网带宽上,所以压根就谈不上2核2G的CPU内存计算性能是否够…...
8.12学习笔记
在PyTorch中,Dataset和DataLoader是用于处理数据的两个重要类。Dataset类是一个抽象类,用于表示数据集。它的主要作用是将数据加载到内存中,并提供一种统一的方式来访问数据。为了使用Dataset类,你需要继承它并实现两个方法&#…...
计算机体系中的不同的缓存存储层级说明
分级说明 L1缓存的标准延迟是4个周期。这意味着,当CPU请求数据时,L1缓存需要4个时钟周期来将数据传输给CPU。 L2缓存的标准延迟是12个周期。相对于L1缓存,L2缓存的容量更大,但其读取速度更慢,需要更多的时钟周期来传输…...
HCIP 链路聚合技术
1、链路聚合概述 为了保证网络的稳定性,仅仅是设备进行备份还不够,我们需要针对我们的链路进行备份,同时也增加了链路的利用率,提高带宽。避免一条链路出现故障,导致网络无法正常通信。这就可以使用链路聚合技术。 以…...
网页爬虫中常用代理IP主要有哪几种?
各位爬虫探索者,你是否有想过在网页爬虫中使用代理IP来规避限制实现数据自由?在这篇文章中,作为一名IP代理产品供应商,我将为你揭示常见的网页爬虫代理IP类型,让你在爬虫的世界中游刃有余! 一、免费公开代理…...
Js小数运算精度缺失的解决方法
项目场景: 提示:项目需求截图: 问题描述 众所周知Js做运算时0.10.2不等于0.3,目前项目需要计算关于金额的选项,涉及到金额保留后两位。保单欠款是根据用户输入的保单应收和保单欠款自动计算的。 原因分析: 产生浮点数…...
25 | 葡萄酒质量数据分析
基于kaggle提供的公开数据集,对全球葡萄酒分布情况和质量情况进行数据探索和分析 from kaggle: https://www.kaggle.com/zynicide/wine-reviews 分析思路: 0、数据准备 1、葡萄酒的种类 2、葡萄酒质量 3、葡萄酒价格 4、葡萄酒描述词库 5、品鉴师信息 6、总结 0、数据准备 …...
在 Windows 上安装 OpenCV – C++ / Python
在这篇博文中,我们将在 Windows 上安装适用于 C 和 Python 的 OpenCV。 C 安装是在自定义安装 exe 文件的帮助下完成的。而Python的安装是通过Anaconda完成的。 在 Windows 上安装 OpenCV – C / Python(opencv官方Wndows上安装openCV- C/ Pthon 的链接…...
前后端交互开发模式yapi使用
接手一个项目组,采用前后端开发模式分离,经过一阵子了解后,发现存在前后端配合不顺畅的情况,存在如下两个问题, 一:没有接口协议,前端开发时先用占位符,等后端开发协议出来后替换,影响效率。 二:前端开发好了, 后端没开发好,前端只能等待后端开发好。 做为一个团队技…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
