当前位置: 首页 > news >正文

opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor()

注意:新版本的opencv 4 已经没有这个函数 cv2.createShapeContextDistanceExtractor()

形状场景算法是一种用于比较轮廓或形状的方法。这种算法通常用于计算两个形状之间的相似性或差异性,以及找到最佳的匹配方式。

下面是一种基本的比较轮廓的流程,使用了形状场景算法:

  1. 数据准备: 首先,你需要准备两个形状的轮廓数据。轮廓可以表示为一系列的点坐标,或者更高级的表示方法,比如参数化的曲线等。

  2. 特征提取: 对于每个形状,你可以使用形状描述符或特征提取算法,将轮廓数据转化为一组能够表征形状的数值特征。这些特征可以是形状的曲率、长度、角度等等。

  3. 相似性度量: 选择一个相似性度量方法来比较两个形状的特征。常见的方法包括欧氏距离、曼哈顿距离、余弦相似度等。这些度量方法将两个形状的特征转化为一个相似性分数,分数越高表示形状越相似。

  4. 匹配与优化: 如果你想要找到最佳的形状匹配,可以使用优化算法来调整一个形状以使其与另一个形状更加相似。这可能涉及到形状的缩放、旋转、平移等变换。

  5. 可视化与解释: 最后,你可以可视化两个形状,展示它们的相似性以及在匹配过程中发生的变化。这可以通过绘制形状、展示变换等方式来实现。

需要注意的是,形状场景算法的选择取决于你所处理的具体问题和数据。不同的算法可能在不同的场景下表现更佳。一些常用的形状比较算法包括基于轮廓匹配的方法(如Frechet距离、Hausdorff距离)、基于特征的方法(如傅里叶描述符、轮廓矢量化等)、基于统计的方法(如Procrustes分析)等。

最终,选择适合你问题需求的方法,并根据实际情况进行调整和优化,以得到准确的形状比较结果。

利用形状场景算法比较轮廓与Hu 矩的区别

形状场景算法和Hu矩都是用于比较轮廓或形状的方法,但它们基于不同的原理和特征表示。

下面是它们之间的区别:

1. 原理和特征表示:

  • 形状场景算法: 形状场景算法基于整个形状的轮廓信息,通常通过提取一系列特征点的坐标来表示轮廓,然后计算这些特征点之间的几何关系、曲率等信息。这些算法可以比较两个形状之间的形状变化、缩放、旋转等变换。

  • Hu矩: Hu矩是一组与形状相关的不变矩,用于描述对象的整体形状特征。它们通过对轮廓的几何矩进行变换和归一化得到。Hu矩是一种用于表示形状的紧凑形式,能够在一定程度上保持形状的平移、旋转和缩放不变性。

2. 不变性:

  • 形状场景算法: 形状场景算法通常对形状的几何变换比较敏感,因此可能需要进行额外的处理来考虑形状的平移、旋转和缩放等变换。

  • Hu矩: Hu矩被设计用于保持一定的形状不变性,它们对于平移、旋转和缩放都具有一定程度的不变性。这使得Hu矩在某些形状匹配和识别任务中非常有用。

3. 适用领域:

  • 形状场景算法: 形状场景算法适用于需要考虑形状变换以及局部特征的情况。例如,可以用于比较两个形状的整体结构和曲率变化。

  • Hu矩: Hu矩适用于需要保持形状不变性的场景,例如对象识别、图像检索等。它们能够在一定程度上解决形状的旋转、平移和缩放变化对比较造成的影响。

OpenCV 提供了使用“距离”作为形状比较的度量标准。这是因为形状之间的差异值和距离有相似之处,比如二者都只能是零或者正数,又比如当两个形状一模一样时距离值和差值都等于零。

OpenCV 提供了函数 cv2.createShapeContextDistanceExtractor(),用于计算形状场景距离。

其使用的“形状上下文算法”在计算距离时,在每个点上附加一个“形状上下文”描述符,让每个点都能够捕获剩余点相对于它的分布特征,从而提供全局鉴别特征。

函数 cv2.createShapeContextDistanceExtractor()的语法格式为:

retval = cv2.createShapeContextDistanceExtractor( [, nAngularBins[,
nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[,
transformer]]]]]]] )

式中的返回值为 retval,返回结果。
该结果可以通过函数 cv2.ShapeDistanceExtractor.computeDistance()计算两个不同形状之间的距离。此函数的语法格式为:

retval=cv2.ShapeDistanceExtractor.computeDistance(contour1, contour2)

式中,coutour1 和 coutour2 是不同的轮廓。

函数 cv2.createShapeContextDistanceExtractor()的参数都是可选参数:

  • nAngularBins:为形状匹配中使用的形状上下文描述符建立的角容器的数量。
  • nRadialBins:为形状匹配中使用的形状上下文描述符建立的径向容器的数量。
  • innerRadius:形状上下文描述符的内半径。
  • outerRadius:形状上下文描述符的外半径。
  • iterations:迭代次数。
  • comparer:直方图代价提取算子。该函数使用了直方图代价提取仿函数,可以直接采用
    直方图代价提取仿函数的算子作为参数。
  • transformer:形状变换参数。

示例:使用函数 cv2.createShapeContextDistanceExtractor()计算形状场景距离。

import cv2
#-----------原始图像 o1 的边缘--------------------
o1 = cv2.imread('cs.bmp')
cv2.imshow("original1",o1)
gray1 = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY)
ret, binary1 = cv2.threshold(gray1,127,255,cv2.THRESH_BINARY)
contours1, hierarchy = cv2.findContours(binary1,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)cnt1 = contours1[0]
#-----------原始图像 o2 的边缘--------------------
o2 = cv2.imread('cs3.bmp')
cv2.imshow("original2",o2)
gray2 = cv2.cvtColor(o2,cv2.COLOR_BGR2GRAY)
ret, binary2 = cv2.threshold(gray2,127,255,cv2.THRESH_BINARY)
contours2, hierarchy = cv2.findContours(binary2,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)cnt2 = contours2[0]
#-----------原始图像 o3 的边缘--------------------
o3 = cv2.imread('hand.bmp')
cv2.imshow("original3",o3)
gray3 = cv2.cvtColor(o3,cv2.COLOR_BGR2GRAY)
ret, binary3 = cv2.threshold(gray3,127,255,cv2.THRESH_BINARY)
contours3, hierarchy = cv2.findContours(binary3,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt3 = contours3[0]#-----------构造距离提取算子--------------------
sd = cv2.createShapeContextDistanceExtractor()#-----------计算距离--------------------
d1 = sd.matchShapes(cnt1,cnt1)
print("与自身的距离 d1=", d1)
d2 = sd.matchShapes(cnt1,cnt2)
print("与旋转缩放后的自身图像的距离 d2=", d2)
d3 = sd.matchShapes(cnt1,cnt3)
print("与不相似对象的距离 d3=", d3)cv2.waitKey()
cv2.destroyAllWindows()

运行后报错:

在这里插入图片描述

相关文章:

opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor()

注意:新版本的opencv 4 已经没有这个函数 cv2.createShapeContextDistanceExtractor() 形状场景算法是一种用于比较轮廓或形状的方法。这种算法通常用于计算两个形状之间的相似性或差异性,以及找到最佳的匹配方式。 下面是一种基本的比较轮廓的流程&…...

分布式系统理论

以前的架构...

Gartner发布2023年的存储技术成熟曲线

技术路线说明 Gartner自1995年起开始采用技术成熟度曲线,它描述创新的典型发展过程,即从过热期发展到幻灭低谷期,再到人们最终理解创新在市场或领域内的意义和角色。 一项技术 (或相关创新)在发展到最终成熟期的过程中经历多个阶段&#xff1…...

c++ 有元

友元分为两部分内容 友元函数友元类 友元函数 问题&#xff1a;当我们尝试去重载operator<<&#xff0c;然后发现没办法将operator<<重载成成员函数。因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置。this指针默认是第一个参数也就是左操作 数了。…...

安卓:网络框架okhttp

目录 一、okhttp介绍 1. OkHttpClient类&#xff1a; 常用方法&#xff1a; 2. Request类&#xff1a; 常用方法&#xff1a; 3. Response类&#xff1a; 常用方法&#xff1a; 4. Call类&#xff1a; 常用方法&#xff1a; 5. Interceptor接口&#xff1a; 常用方法&…...

Python爬虫 爬取图片

在我们日常上网浏览网页的时候&#xff0c;经常会看到一些好看的图片&#xff0c;我们就希望把这些图片保存下载&#xff0c;或者用户用来做桌面壁纸&#xff0c;或者用来做设计的素材。 我们最常规的做法就是通过鼠标右键&#xff0c;选择另存为。但有些图片鼠标右键的时候并没…...

【云原生】Pod详讲

目录 一、Pod基础概念1.1//在Kubrenetes集群中Pod有如下两种使用方式&#xff1a;1.2pause容器使得Pod中的所有容器可以共享两种资源&#xff1a;网络和存储。1.3kubernetes中的pause容器主要为每个容器提供以下功能&#xff1a;1.4Kubernetes设计这样的Pod概念和特殊组成结构有…...

先进先出的队

文章目录 队列特点队列实现 队列特点 先进先出&#xff0c;后进后出 队列实现 queue.c#define _CRT_SECURE_NO_WARNINGS 1 #include"Queue.h" //初始化 void QueInit(Queue* pq) {assert(pq);pq->head NULL;pq->tail NULL;pq->size 0; } //入队&#…...

怎样学会单片机

0、学单片机首先要明白&#xff0c;一个单片机啥也干不了&#xff0c;学单片机的目的是学习怎么用单片机驱动外部设备&#xff0c;比如数码管&#xff0c;电机&#xff0c;液晶屏等&#xff0c;这个需要外围电路的配合&#xff0c;所以学习单片机在这个层面上可以等同为学习单片…...

数据结构笔记--常见二叉树分类及判断实现

目录 1--搜索二叉树 2--完全二叉树 3--平衡二叉树 4--满二叉树 1--搜索二叉树 搜索二叉树的性质&#xff1a;左子树的节点值都比根节点小&#xff0c;右子树的节点值都比根节点大&#xff1b; 如何判断一颗二叉树是搜索二叉树&#xff1f; 主要思路&#xff1a; 递归自底向…...

docker小白第二天

centos上安装docker docker官网&#xff0c;docker官网&#xff0c;找到下图中的doc文档。 进入如下页面 选中manuals&#xff0c;安装docker引擎。 最终centos下的docker安装文档链接&#xff1a;安装文档链接. 具体安装步骤&#xff1a; 1、打开Centos&#xff0c;输入命…...

【变形金刚03】使用 Pytorch 开始构建transformer

一、说明 在本教程中&#xff0c;我们将使用 PyTorch 从头开始构建一个基本的转换器模型。Vaswani等人在论文“注意力是你所需要的一切”中引入的Transformer模型是一种深度学习架构&#xff0c;专为序列到序列任务而设计&#xff0c;例如机器翻译和文本摘要。它基于自我注意机…...

「Web3大厂」价值70亿美元的核心竞争力

经过近 5 年的研发和酝酿&#xff0c;Linea 团队在 7 月的巴黎 ETHCC 大会期间宣布了主网 Alpha 的上线&#xff0c;引起了社区的广泛关注。截止 8 月 4 日&#xff0c;据 Dune 数据信息显示&#xff0c;其主网在一周内就涌入了 100 多个生态项目&#xff0c;跨入了超 2 万枚 E…...

前端发送请求和后端springboot接受参数

0.xhr、 ajax、axios、promise和async/await 和http基本方法 xhr、 ajax、axios、promise和async/await都是异步编程和网络请求相关的概念和技术&#xff01; xhr&#xff1a;XMLHttpRequest是浏览器提供的js对象&#xff08;API&#xff09;&#xff0c;用于请求服务器资源。…...

程序一直在阿里云服务器运行

保持阿里云服务器开机程序保持运行. 1.下载Screen CentOS 系列系统&#xff1a; yum install screen Ubuntu 系列系统&#xff1a; sudo apt-get install screen 2、运行screen&#xff0c;创建一个screen screen -S name:name是标记进程, 给进程备注…...

Linux 文件与目录管理

nvLinux 文件与目录管理 我们知道 Linux 的目录结构为树状结构&#xff0c;最顶级的目录为根目录 /。 其他目录通过挂载可以将它们添加到树中&#xff0c;通过解除挂载可以移除它们。 在开始本教程前我们需要先知道什么是绝对路径与相对路径。 绝对路径&#xff1a; 路径的写…...

【CSS】CSS 布局——弹性盒子

Flexbox 是一种强大的布局系统&#xff0c;旨在更轻松地使用 CSS 创建复杂的布局。 它特别适用于构建响应式设计和在容器内分配空间&#xff0c;即使项目的大小是未知的或动态的。Flexbox 通常用于将元素排列成一行或一列&#xff0c;并提供一组属性来控制 flex 容器内的项目行…...

“华为杯”研究生数学建模竞赛2018年-【华为杯】B题:光传送网建模与价值评估(附优秀论文及matlab代码实现)

目录 摘要: 1.问题重述 1.1 问题背景 1.2 问题提出 2.问题假设 3.符号说明...

群晖 nas 自建 ntfy 通知服务(梦寐以求)

目录 一、什么是 ntfy ? 二、在群晖nas上部署ntfy 1. 在Docker中安装ntfy 2. 设置ntfy工作文件夹 3. 启动部署在 docker 中的 ntfy&#xff08;binwiederhier/ntfy&#xff09; 三、启动配置好后&#xff0c;如何使用ntfy 1. 添加订阅主题&#xff08; Subscribe to topic…...

Java基础练习九(方法)

求和 设计一个方法&#xff0c;用于计算整数的和 public class Work1101 {public static void main(String[] args) {// 设计一个方法&#xff0c;用于计算整数的和System.out.println(sum(7, 6));}public static int sum(int a, int b) {return a b;} }阶乘 编写一个方法&…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...

CTF show 数学不及格

拿到题目先查一下壳&#xff0c;看一下信息 发现是一个ELF文件&#xff0c;64位的 ​ 用IDA Pro 64 打开这个文件 ​ 然后点击F5进行伪代码转换 可以看到有五个if判断&#xff0c;第一个argc ! 5这个判断并没有起太大作用&#xff0c;主要是下面四个if判断 ​ 根据题目…...