回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测
回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测
目录
- 回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现PSO-LSSVM-Adaboost多变量回归预测;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,PSO-LSSVM-AdaboostNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;
模型描述
PSO-LSSVM-Adaboost是一种将PSO-LSSVM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。PSO-LSSVM-AdaBoost算法的基本思想是将PSO-LSSVM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个PSO-LSSVM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
程序设计
- 完整源码和数据获取方式:私信回复SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测。
%% 预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test ); %% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])% MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测
回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考…...

Mysql 和Oracle的区别
、mysql与oracle都是关系型数据库,Oracle是大型数据库,而MySQL是中小型数据库。但是MySQL是开源的,但是Oracle是收费的,而且比较贵。 1 2 mysql默认端口:3306,默认用户:root oracle默认端口&…...

在收藏夹里“积灰”的好东西——“收藏从未停止,行动从未开始”
方向一:分享一道你收藏的好题 小雅兰刚学数据结构与算法的时候,学的真的是很吃力,感觉链表真的特别的难,在学习了后面的知识之后,发现链表慢慢变得简单了,若是放在现在,小雅兰仍然觉得链表的知…...

【算法|数组】双指针
算法|数组——双指针 引入 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 示例 1: 输入:nums [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:…...
asp.net core6 webapi 使用反射批量注入接口层和实现接口层的接口的类到ioc中
IBLL接口层类库 namespace IBLL {public interface ICar{string CarName();} } namespace IBLL {public interface IRed{string RedName();} }BLL实现接口层类库 namespace BLL {public class Car : ICar{public string CarName(){return "BBA";}} } namespace BLL…...
【2023】字节跳动 10 日心动计划——第九关
目录 1. 螺旋矩阵2. 划分字母区间3. 子集 II 1. 螺旋矩阵 🔗 原题链接:54. 螺旋矩阵 类似于BFS那样使用方向数组即可。 class Solution { public:vector<int> spiralOrder(vector<vector<int>>& matrix) {int m matrix.size(), …...

小龟带你敲排序之冒泡排序
冒泡排序 一. 定义二.题目三. 思路分析(图文结合)四. 代码演示 一. 定义 冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元…...

Nacos AP架构集群搭建(Windows)
手写SpringCloud项目地址,求个star github:https://github.com/huangjianguo2000/spring-cloud-lightweight gitee:https://gitee.com/huangjianguo2000/spring-cloud-lightweigh 目录: 一:初始化MySQL 二:复制粘贴三份Nacos文…...

nodejs+vue+elementui,图书评论管理系统_g9e3a
用户的功能主要是对首页、图书信息、公告信息、在线咨询、个人中心等进行操作。表名:token语言 node.js 框架:Express 前端:Vue.js 数据库:mysql 数据库工具:Navicat 开发软件:VScode 前端nodejsvueelementui, 管理员…...

基于TorchViz详解计算图(附代码)
文章目录 0. 前言1. 计算图是什么?2. TorchViz的安装3. 计算图详解 0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,…...

解决GitHub的速度很慢的几种方式
1. GitHub 镜像访问 这里提供两个最常用的镜像地址: https://hub.njuu.cf/search https://www.gitclone.com/gogs/search/clonesearch 也就是说上面的镜像就是一个克隆版的 GitHub,你可以访问上面的镜像网站,网站的内容跟 GitHub 是完整同步…...

设计模式再探——策略模式
目录 一、背景介绍二、思路&方案三、过程1.策略模式简介2.策略模式的类图3.策略模式代码4.策略模式还可以优化的地方5.策略模式的例子改造(配置文件反射) 四、总结五、升华 一、背景介绍 最近在做产品的过程中,对于主题讨论回复内容,按照追评次数排…...

基于Googlenet深度学习网络的人员行为动作识别matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1. 原理 1.1 深度学习与卷积神经网络(CNN) 1.2 GoogLeNet 2. 实现过程 2.1 数据预处理 2.2 构建网络模型 2.3 数据输入与训练 2.4 模型评估与调优 3. 应用领域…...

存储过程的学习
1,前言 这是实习期间学习的,我可能是在学校没好好听课,(或者就是学校比较垃,没教这部分,在公司经理让我下去自己学习,太难了,因为是公司代码很多部分都是很多表的操作&#…...

zookeeperAPI操作与写数据原理
要执行API操作需要在idea中创建maven项目 (改成自己的阿里仓库)导入特定依赖 添加日志文件 上边操作做成后就可以进行一些API的实现了 目录 导入maven依赖: 创建日志文件: 创建API客户端: (1)…...
防火墙对双通道协议的处理
防火墙是一种网络安全设备或软件,用于控制网络流量并保护计算机网络免受未经授权的访问、恶意攻击和网络威胁。它作为网络的第一道防线,用于监视、过滤和管理进出网络的数据包。 防火墙可以基于预设的安全策略对网络流量进行评估和筛选。它通过比较数据…...

vscode搭建c语言环境问题
c语言环境搭建参考文章:【C语言初级阶段学习1】使用vscode运行C语言,vscode配置环境超详细过程(包括安装vscode和MinGW-W64安装及后续配置使用的详细过程,vscode用户代码片段的使用)[考研专用]_QAQshift的博客-CSDN博客 问题如下:…...

全网最全的接口自动化测试教程
为什么要做接口自动化 相对于UI自动化而言,接口自动化具有更大的价值。 为了优化转化路径或者提升用户体验,APP/web界面的按钮控件和布局几乎每个版本都会发生一次变化,导致自动化的代码频繁变更,没有起到减少工作量的效果。 而…...

数据结构----结构--线性结构--链式存储--链表
数据结构----结构–线性结构–链式存储–链表 1.链表的特点 空间可以不连续,长度不固定,相对于数组灵活自由 搜索: 时间复杂度O(n) 增删: 头增头删时间复杂度O(1) 其他时间复杂度为O(n) 扩展:单向循环链表的特性 从任意节…...

【5G 核心网】5G 多PDU会话锚点技术介绍
博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
大数据治理的常见方式
大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法,以下是几种常见的治理方式: 1. 数据质量管理 核心方法: 数据校验:建立数据校验规则(格式、范围、一致性等)数据清洗&…...