同济子豪兄模板 半天搞定图像分类
同济子豪兄模板 半天搞定图像分类
‘’'import cv2
import numpy as np
import time
from tqdm import tqdm
视频逐帧处理代码模板
不需修改任何代码,只需定义process_frame函数即可
def generate_video(input_path=‘videos/robot.mp4’):
filehead = input_path.split(‘/’)[-1]
output_path = “out-” + filehead
print('视频开始处理',input_path)# 获取视频总帧数
cap = cv2.VideoCapture(input_path)
frame_count = 0
while(cap.isOpened()):success, frame = cap.read()frame_count += 1if not success:break
cap.release()
print('视频总帧数为',frame_count)# cv2.namedWindow('Crack Detection and Measurement Video Processing')
cap = cv2.VideoCapture(input_path)
frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
# fourcc = cv2.VideoWriter_fourcc(*'XVID')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)out = cv2.VideoWriter(output_path, fourcc, fps, (int(frame_size[0]), int(frame_size[1])))# 进度条绑定视频总帧数
with tqdm(total=frame_count-1) as pbar:try:while(cap.isOpened()):success, frame = cap.read()if not success:break# 处理帧# frame_path = './temp_frame.png'# cv2.imwrite(frame_path, frame)try:frame = process_frame(frame)except:print('报错!', error)passif success == True:# cv2.imshow('Video Processing', frame)out.write(frame)# 进度条更新一帧pbar.update(1)# if cv2.waitKey(1) & 0xFF == ord('q'):# breakexcept:print('中途中断')passcv2.destroyAllWindows()
out.release()
cap.release()
print('视频已保存', output_path)
处理帧函数
def process_frame(img_bgr):
'''
输入摄像头拍摄画面bgr-array,输出图像分类预测结果bgr-array
'''# 记录该帧开始处理的时间
start_time = time.time()## 画面转成 RGB 的 Pillow 格式
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) # BGR转RGB
img_pil = Image.fromarray(img_rgb) # array 转 PIL## 预处理
input_img = test_transform(img_pil) # 预处理
input_tensor = input_img.unsqueeze(0).numpy()## onnx runtime 预测
ort_inputs = {'input': input_tensor} # onnx runtime 输入
pred_logits = ort_session.run(['output'], ort_inputs)[0] # onnx runtime 输出
pred_logits = torch.tensor(pred_logits)
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算## 解析top-n预测结果的类别和置信度
top_n = torch.topk(pred_softmax, 3) # 取置信度最大的 n 个结果
pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析预测类别
confs = top_n[0].cpu().detach().numpy().squeeze() # 解析置信度# 在图像上写英文
for i in range(len(confs)):pred_class = idx_to_labels[pred_ids[i]]# 写字:图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型text = '{:<12} {:>.2f}'.format(pred_class, confs[i])img_bgr = cv2.putText(img_bgr, text, (50, 160 + 40 * i), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)# 记录该帧处理完毕的时间
end_time = time.time()
# 计算每秒处理图像帧数FPS
FPS = 1/(end_time - start_time)
# 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型
img_bgr = cv2.putText(img_bgr, 'FPS '+str(int(FPS)), (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)return img_bgr
while True:
img_bgr = cap.read()
if img_bgr is None:continueimg_bgr = process_frame(img_bgr)cvs.imshow(img_bgr)
‘’’
demo见B站分享: Aidlux两天搞定图像分类,半天就可以 |【aidlux实现图像分类~还是蛮好用的,可以推荐-哔哩哔哩】 https://b23.tv/codx3GL
相关文章:
同济子豪兄模板 半天搞定图像分类
同济子豪兄模板 半天搞定图像分类 ‘’import cv2 import numpy as np import time from tqdm import tqdm 视频逐帧处理代码模板 不需修改任何代码,只需定义process_frame函数即可 def generate_video(input_path‘videos/robot.mp4’): filehead input_path.…...
接口自动化测试,Fiddler使用抓包辅助实战,一篇彻底打通...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、快捷设置&…...
概念解析 | 隐式神经表示:揭开神经网络黑盒的奥秘
注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:隐式神经表示(Implicit Neural Representations) 隐式神经表示:揭开神经网络黑盒的奥秘 近年来,神经网络在各种任务上取得了惊人的进步,但其内部表示方式依然难以解读,被称为“…...
深入浅出PHP封装根据商品ID获取淘宝商品详情数据方法
要通过淘宝的API获取商品详情,您可以使用淘宝开放平台提供的接口来实现。以下是一种使用PHP编程语言实现的示例,展示如何通过淘宝开放平台API获取商品详情: 首先,确保您已注册成为淘宝开放平台的开发者,并创建一个应用…...
自动切换HTTP爬虫ip助力Python数据采集
在Python数据采集中,如果你需要爬取一些网站的数据,并且需要切换IP地址来避免被封或限制,我们可以考虑以下几种方式来实现自动切换HTTP爬虫IP。 1. 使用代理服务器 使用代理服务器是常见的IP切换技术之一。你可以购买或使用免费的代理服务器…...
20230811导出Redmi Note12Pro 5G手机的录音机APP的录音
20230811导出Redmi Note12Pro 5G手机的录音机APP的录音 2023/8/11 10:54 redmi note12 pro 录音文件 位置 貌似必须导出录音,录音的源文件不知道存储到哪里了! 参考资料: https://jingyan.baidu.com/article/b87fe19e9aa79b1319356842.html 红…...
Python-OpenCV中的图像处理-傅里叶变换
Python-OpenCV中的图像处理-傅里叶变换 傅里叶变换Numpy中的傅里叶变换Numpy中的傅里叶逆变换OpenCV中的傅里叶变换OpenCV中的傅里叶逆变换 DFT的性能优化不同滤波算子傅里叶变换对比 傅里叶变换 傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变…...
8.10 用redis实现缓存功能和Spring Cache
什么是缓存? 缓存(Cache), 就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码。 通过Redis来缓存数据,减少数据库查询操作; 逻辑 每个分类的菜品保存一份缓存数据 数据库菜品数据有变更时清理缓存数据 如何将商品数据缓存起…...
SPI协议个人记录
SPI协议 SPI(Serial Peripheral Interface)是一种同步串行接口技术,由Motorola公司推出。SPI总线系统是一种同步串行外设接口,允许MCU与各种外围设备以串行方式进行通信和数据交换。外围设备包括FLASHRAM、A/D转换器、网络控制器…...
【深度学习 video detect】Towards High Performance Video Object Detection for Mobiles
文章目录 摘要IntroductionRevisiting Video Object Detection BaselinePractice for Mobiles Model Architecture for MobilesLight Flow 摘要 尽管在桌面GPU上取得了视频目标检测的最近成功,但其架构对于移动设备来说仍然过于沉重。目前尚不清楚在非常有限的计算…...
时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比
时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比 目录 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 时序预测 | …...
【软件工程】面向对象方法-RUP
RUP(Rational Unified Process,统一软件开发过程)。 RUP特点 以用况驱动的,以体系结构为中心的,迭代增量式开发 用况驱动 用况是能够向用户提供有价值结果的系统中的一种功能用况获取的是功能需求 在系统的生存周期中…...
Golang 的面向对象
文章目录 duck typingnil不一定是空接口组合代替继承接口转换回具体的类型使用switch匹配接口的原始类型 duck typing golang中实现某个接口不需要像其它语言使用 implemet 去继承实现,而是只要你的结构体包含接口所需的方法即可 package mainimport "fmt&qu…...
STABLE DIFFUSION模型及插件的存放路径
记录下学习SD的一些心得,使用的是秋叶大佬的集成webui,下载了之后点击启动器即可开启,文件夹中的内容如下 主模型存放在models文件下的stable-diffusion文件夹内,一些扩展类的插件是存放在extensions文件夹下...
Three.js 设置模型材质纹理贴图和修改材质颜色,材质透明度,材质网格
相关API的使用: 1 traverse (模型循环遍历方法) 2. THREE.TextureLoader(用于加载和处理图片纹理) 3. THREE.MeshLambertMaterial(用于创建材质) 4. getObjectByProperty(通过材…...
docker 安装mongodb 虚拟机安装mongodb
生产环境直接安装比较好,以及使用集群环境,本文仅测试交流使用,我用来写分布式im测试使用: nami-im: 分布式im, 集群 zookeeper netty kafka nacos rpc主要为gate(长连接服务) logic (业务&…...
在SockJS+Spring Websocket中convertAndSendToUser中的“用户”来自哪里?
目录 一、前言二、Principal三、使用 一、前言 我们知道可以使用客户端订阅的主题前缀从 stomp 服务器向客户端发送消息,例如 /topic/hello。我们还知道我们可以向特定用户发送消息,因为 spring 提供了convertAndSendToUser(username, destination, mes…...
【软件测试】我的2023面试经验谈
最近行业里有个苦涩的笑话:公司扛过了之前的三年,没扛过摘下最近的一年,真是让人想笑又笑不出来。年前听说政策的变化,大家都满怀希望觉得年后行情一片大好,工作岗位激增,至少能有更多的机会拥抱未来。然而…...
SpringBoot 整合JDBC
SpringData简介 Sping Data 官网:https://spring.io/projects/spring-data数据库相关的启动器 :可以参考官方文档:https://docs.spring.io/spring-boot/docs/2.6.5/reference/htmlsingle/#using-boot-starter 整合JDBC 创建测试项目测试数据…...
TypeScript使用npm安装报错问题
问题如图: 问题原因: 权限不足导致,可以输入如下命令: sudo npm install i -g typescript该命令会要求输入登录密码相关,稍等片刻,即可安装成功。检测安装的命令: tsc -v...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
