当前位置: 首页 > news >正文

同济子豪兄模板 半天搞定图像分类

同济子豪兄模板 半天搞定图像分类

‘’'import cv2
import numpy as np
import time
from tqdm import tqdm

视频逐帧处理代码模板

不需修改任何代码,只需定义process_frame函数即可

def generate_video(input_path=‘videos/robot.mp4’):
filehead = input_path.split(‘/’)[-1]
output_path = “out-” + filehead

print('视频开始处理',input_path)# 获取视频总帧数
cap = cv2.VideoCapture(input_path)
frame_count = 0
while(cap.isOpened()):success, frame = cap.read()frame_count += 1if not success:break
cap.release()
print('视频总帧数为',frame_count)# cv2.namedWindow('Crack Detection and Measurement Video Processing')
cap = cv2.VideoCapture(input_path)
frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
# fourcc = cv2.VideoWriter_fourcc(*'XVID')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)out = cv2.VideoWriter(output_path, fourcc, fps, (int(frame_size[0]), int(frame_size[1])))# 进度条绑定视频总帧数
with tqdm(total=frame_count-1) as pbar:try:while(cap.isOpened()):success, frame = cap.read()if not success:break# 处理帧# frame_path = './temp_frame.png'# cv2.imwrite(frame_path, frame)try:frame = process_frame(frame)except:print('报错!', error)passif success == True:# cv2.imshow('Video Processing', frame)out.write(frame)# 进度条更新一帧pbar.update(1)# if cv2.waitKey(1) & 0xFF == ord('q'):# breakexcept:print('中途中断')passcv2.destroyAllWindows()
out.release()
cap.release()
print('视频已保存', output_path)

处理帧函数

def process_frame(img_bgr):

'''
输入摄像头拍摄画面bgr-array,输出图像分类预测结果bgr-array
'''# 记录该帧开始处理的时间
start_time = time.time()## 画面转成 RGB 的 Pillow 格式
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) # BGR转RGB
img_pil = Image.fromarray(img_rgb) # array 转 PIL## 预处理
input_img = test_transform(img_pil) # 预处理
input_tensor = input_img.unsqueeze(0).numpy()## onnx runtime 预测
ort_inputs = {'input': input_tensor} # onnx runtime 输入
pred_logits = ort_session.run(['output'], ort_inputs)[0] # onnx runtime 输出
pred_logits = torch.tensor(pred_logits)
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算## 解析top-n预测结果的类别和置信度
top_n = torch.topk(pred_softmax, 3) # 取置信度最大的 n 个结果
pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析预测类别
confs = top_n[0].cpu().detach().numpy().squeeze() # 解析置信度# 在图像上写英文
for i in range(len(confs)):pred_class = idx_to_labels[pred_ids[i]]# 写字:图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型text = '{:<12} {:>.2f}'.format(pred_class, confs[i])img_bgr = cv2.putText(img_bgr, text, (50, 160 + 40 * i), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)# 记录该帧处理完毕的时间
end_time = time.time()
# 计算每秒处理图像帧数FPS
FPS = 1/(end_time - start_time)  
# 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型
img_bgr = cv2.putText(img_bgr, 'FPS  '+str(int(FPS)), (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)return img_bgr

while True:
img_bgr = cap.read()

if img_bgr is None:continueimg_bgr = process_frame(img_bgr)cvs.imshow(img_bgr)

‘’’

demo见B站分享: Aidlux两天搞定图像分类,半天就可以 |【aidlux实现图像分类~还是蛮好用的,可以推荐-哔哩哔哩】 https://b23.tv/codx3GL

相关文章:

同济子豪兄模板 半天搞定图像分类

同济子豪兄模板 半天搞定图像分类 ‘’import cv2 import numpy as np import time from tqdm import tqdm 视频逐帧处理代码模板 不需修改任何代码&#xff0c;只需定义process_frame函数即可 def generate_video(input_path‘videos/robot.mp4’): filehead input_path.…...

接口自动化测试,Fiddler使用抓包辅助实战,一篇彻底打通...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、快捷设置&…...

概念解析 | 隐式神经表示:揭开神经网络黑盒的奥秘

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:隐式神经表示(Implicit Neural Representations) 隐式神经表示:揭开神经网络黑盒的奥秘 近年来,神经网络在各种任务上取得了惊人的进步,但其内部表示方式依然难以解读,被称为“…...

深入浅出PHP封装根据商品ID获取淘宝商品详情数据方法

要通过淘宝的API获取商品详情&#xff0c;您可以使用淘宝开放平台提供的接口来实现。以下是一种使用PHP编程语言实现的示例&#xff0c;展示如何通过淘宝开放平台API获取商品详情&#xff1a; 首先&#xff0c;确保您已注册成为淘宝开放平台的开发者&#xff0c;并创建一个应用…...

自动切换HTTP爬虫ip助力Python数据采集

在Python数据采集中&#xff0c;如果你需要爬取一些网站的数据&#xff0c;并且需要切换IP地址来避免被封或限制&#xff0c;我们可以考虑以下几种方式来实现自动切换HTTP爬虫IP。 1. 使用代理服务器 使用代理服务器是常见的IP切换技术之一。你可以购买或使用免费的代理服务器…...

20230811导出Redmi Note12Pro 5G手机的录音机APP的录音

20230811导出Redmi Note12Pro 5G手机的录音机APP的录音 2023/8/11 10:54 redmi note12 pro 录音文件 位置 貌似必须导出录音&#xff0c;录音的源文件不知道存储到哪里了&#xff01; 参考资料&#xff1a; https://jingyan.baidu.com/article/b87fe19e9aa79b1319356842.html 红…...

Python-OpenCV中的图像处理-傅里叶变换

Python-OpenCV中的图像处理-傅里叶变换 傅里叶变换Numpy中的傅里叶变换Numpy中的傅里叶逆变换OpenCV中的傅里叶变换OpenCV中的傅里叶逆变换 DFT的性能优化不同滤波算子傅里叶变换对比 傅里叶变换 傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变…...

8.10 用redis实现缓存功能和Spring Cache

什么是缓存? 缓存(Cache), 就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码。 通过Redis来缓存数据&#xff0c;减少数据库查询操作; 逻辑 每个分类的菜品保存一份缓存数据 数据库菜品数据有变更时清理缓存数据 如何将商品数据缓存起…...

SPI协议个人记录

SPI协议 SPI&#xff08;Serial Peripheral Interface&#xff09;是一种同步串行接口技术&#xff0c;由Motorola公司推出。SPI总线系统是一种同步串行外设接口&#xff0c;允许MCU与各种外围设备以串行方式进行通信和数据交换。外围设备包括FLASHRAM、A/D转换器、网络控制器…...

【深度学习 video detect】Towards High Performance Video Object Detection for Mobiles

文章目录 摘要IntroductionRevisiting Video Object Detection BaselinePractice for Mobiles Model Architecture for MobilesLight Flow 摘要 尽管在桌面GPU上取得了视频目标检测的最近成功&#xff0c;但其架构对于移动设备来说仍然过于沉重。目前尚不清楚在非常有限的计算…...

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比 目录 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 时序预测 | …...

【软件工程】面向对象方法-RUP

RUP&#xff08;Rational Unified Process&#xff0c;统一软件开发过程&#xff09;。 RUP特点 以用况驱动的&#xff0c;以体系结构为中心的&#xff0c;迭代增量式开发 用况驱动 用况是能够向用户提供有价值结果的系统中的一种功能用况获取的是功能需求 在系统的生存周期中…...

Golang 的面向对象

文章目录 duck typingnil不一定是空接口组合代替继承接口转换回具体的类型使用switch匹配接口的原始类型 duck typing golang中实现某个接口不需要像其它语言使用 implemet 去继承实现&#xff0c;而是只要你的结构体包含接口所需的方法即可 package mainimport "fmt&qu…...

STABLE DIFFUSION模型及插件的存放路径

记录下学习SD的一些心得&#xff0c;使用的是秋叶大佬的集成webui&#xff0c;下载了之后点击启动器即可开启&#xff0c;文件夹中的内容如下 主模型存放在models文件下的stable-diffusion文件夹内&#xff0c;一些扩展类的插件是存放在extensions文件夹下...

Three.js 设置模型材质纹理贴图和修改材质颜色,材质透明度,材质网格

相关API的使用&#xff1a; 1 traverse &#xff08;模型循环遍历方法&#xff09; 2. THREE.TextureLoader&#xff08;用于加载和处理图片纹理&#xff09; 3. THREE.MeshLambertMaterial&#xff08;用于创建材质&#xff09; 4. getObjectByProperty&#xff08;通过材…...

docker 安装mongodb 虚拟机安装mongodb

生产环境直接安装比较好&#xff0c;以及使用集群环境&#xff0c;本文仅测试交流使用&#xff0c;我用来写分布式im测试使用&#xff1a; nami-im: 分布式im, 集群 zookeeper netty kafka nacos rpc主要为gate&#xff08;长连接服务&#xff09; logic &#xff08;业务&…...

在SockJS+Spring Websocket中convertAndSendToUser中的“用户”来自哪里?

目录 一、前言二、Principal三、使用 一、前言 我们知道可以使用客户端订阅的主题前缀从 stomp 服务器向客户端发送消息&#xff0c;例如 /topic/hello。我们还知道我们可以向特定用户发送消息&#xff0c;因为 spring 提供了convertAndSendToUser(username, destination, mes…...

【软件测试】我的2023面试经验谈

最近行业里有个苦涩的笑话&#xff1a;公司扛过了之前的三年&#xff0c;没扛过摘下最近的一年&#xff0c;真是让人想笑又笑不出来。年前听说政策的变化&#xff0c;大家都满怀希望觉得年后行情一片大好&#xff0c;工作岗位激增&#xff0c;至少能有更多的机会拥抱未来。然而…...

SpringBoot 整合JDBC

SpringData简介 Sping Data 官网&#xff1a;https://spring.io/projects/spring-data数据库相关的启动器 &#xff1a;可以参考官方文档&#xff1a;https://docs.spring.io/spring-boot/docs/2.6.5/reference/htmlsingle/#using-boot-starter 整合JDBC 创建测试项目测试数据…...

TypeScript使用npm安装报错问题

问题如图&#xff1a; 问题原因&#xff1a; 权限不足导致&#xff0c;可以输入如下命令&#xff1a; sudo npm install i -g typescript该命令会要求输入登录密码相关&#xff0c;稍等片刻&#xff0c;即可安装成功。检测安装的命令&#xff1a; tsc -v...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...