opencv基础55-获取轮廓的特征值及示例
轮廓自身的一些属性特征及轮廓所包围对象的特征对于描述图像具有重要意义。本节介绍几个轮廓自身的属性特征及轮廓所包围对象的特征。
宽高比
可以使用宽高比(AspectRation)来描述轮廓,例如矩形轮廓的宽高比为:
宽高比 = 宽度(Width)/高度(Height)
示例:编写程序计算矩形轮廓的宽高比。
import cv2
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
x,y,w,h = cv2.boundingRect(contours[0])
cv2.rectangle(o,(x,y),(x+w,y+h),(255,255,255),3)
aspectRatio = float(w)/hprint(aspectRatio)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()
运行结果:
同时,程序还会显示如下的运行结果:
2.1506849315068495
可以看出,轮廓的宽高比约为 2。

Extent(用轮廓面积与矩形边界(矩形包围框、矩形轮廓)面积之比 )
可以使用轮廓面积与矩形边界(矩形包围框、矩形轮廓)面积之比 Extend 来描述图像及
其轮廓特征。计算方法为:

示例:计算图像的轮廓面积与其矩形边界面积之比。
import cv2
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
x,y,w,h = cv2.boundingRect(contours[0])
cv2.drawContours(o,contours[0],-1,(0,0,255),3)
cv2.rectangle(o,(x,y),(x+w,y+h),(255,0,0),3)
#----------------计算轮廓的面积与边界矩形的面积-------------------------
rectArea=w*h
cntArea=cv2.contourArea(contours[0])extend=float(cntArea)/rectArea
print(extend)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()
同时,程序还会显示如下的运行结果:
0.6717127650292296
可以看出,本例中图像的轮廓面积与矩形边界面积的比值大约为 0.7。

Solidity(轮廓面积与凸包面积之比)
可以使用轮廓面积与凸包面积之比 Solidity 来衡量图像、轮廓及凸包的特征。其计算方法为:

示例:编写程序计算图像轮廓面积与凸包面积之比。
import cv2
o = cv2.imread('hand.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy =cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(o,contours[0],-1,(0,0,255),3)
cntArea=cv2.contourArea(contours[0])
hull = cv2.convexHull(contours[0])
hullArea = cv2.contourArea(hull)
cv2.polylines(o, [hull], True, (0, 255, 0), 2)
solidity=float(cntArea)/hullArea
print(solidity)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()
同时,程序还会显示如下的运行结果:
0.6752344564084751
可以看出,本例中图像的轮廓面积与凸包面积的比值约为 0.7。
就是绿色的跟红色的面积之比

等效直径(Equivalent Diameter)
可以用等效直径来衡量轮廓的特征值,该值是与轮廓面积相等的圆形的直径。其计算公式为:

示例:计算与轮廓面积相等的圆形的直径,并绘制与该轮廓等面积的圆。
import cv2
import numpy as np
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)cv2.drawContours(o,contours[0],-1,(0,0,255),3)
cntArea=cv2.contourArea(contours[0])
equiDiameter = np.sqrt(4*cntArea/np.pi)
print(equiDiameter)
cv2.circle(o,(100,100),int(equiDiameter/2),(0,0,255),3) #展示等直径大小的圆
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()
同时,程序还会显示如下的运行结果:
99.00522529212108
可以看出,与本例中与轮廓面积相等的圆形的直径约为 99。

方向
在 OpenCV 中,函数 cv2.fitEllipse()可以用来构造最优拟合椭圆,还可以在返回值内分别返回椭圆的中心点、轴长、旋转角度等信息。使用这种形式,能够更直观地获取椭圆的方向等信息。
函数 cv2.fitEllipse()返回各个属性值的语法格式为:
(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)
式中几个返回值的意义如下:
- (x,y):椭圆的中心点。
- (MA,ma):椭圆水平方向轴和垂直方向轴的长度。
- angle:椭圆的旋转角度。
示例:观察函数 cv2.fitEllipse()的不同返回值
import cv2
o = cv2.imread('cc.bmp')cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)ellipse = cv2.fitEllipse(contours[0])
retval=cv2.fitEllipse(contours[0])
print("单个返回值形式:")
print("retval=\n",retval)
(x,y),(MA,ma),angle = cv2.fitEllipse(contours[0])
print("三个返回值形式:")
print("(x,y)=(",x,y,")")
print("(MA,ma)=(",MA,ma,")")
print("angle=",angle)
cv2.ellipse(o,ellipse,(0,0,255),2)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()
同时,程序还会显示如下的运行结果:
单个返回值形式:
retval=
((276.2112731933594, 139.6067352294922), (63.01350021362305,
166.72308349609375), 82.60102844238281)
三个返回值形式:
(x,y)=( 276.2112731933594 139.6067352294922 )
(MA,ma)=( 63.01350021362305 166.72308349609375 )
angle= 82.60102844238281
从以上运行结果可以看出,函数 cv2.fitEllipse()以不同形式返回的值是相同的。

掩模和像素点
有时,我们希望获取某对象的掩模图像及其对应的点。51 节介绍了将函数cv2.drawContours()的轮廓宽度参数 thickness 设置为“-1”,即可获取特定对象的实心轮廓,即特定对象的掩模。
另外,我们可能还希望获取轮廓像素点的具体位置信息。本节介绍如何获取轮廓(实心、空心)的像素点位置信息。
一般情况下,轮廓是图像内非零的像素点,可以通过两种方式获取轮廓像素点的位置信息。
一种是使用 Numpy 函数,另外一种是使用 OpenCV 函数。
1.使用Numpy函数获取轮廓像素点
numpy.nonzero()函数能够找出数组内非零元素的位置,但是其返回值是将行、列分别显示
的。
例如,对于如下数组 a 应用函数 numpy.nonzero():
a=
[[0 0 0 1 0]
[0 0 1 0 1]
[0 0 1 1 1]
[1 0 0 0 0]
[1 0 0 0 1]]
返回的数组 a 内非零元素的位置信息为:
(array([0, 1, 1, 2, 2, 2, 3, 4, 4], dtype=int64), array([3, 2, 4, 2, 3, 4, 0,
0, 4], dtype=int64))
使用 numpy.transpose()函数处理上述返回值,则得到这些点的(x, y)形式的坐标:
[[0 3] [1 2] [1 4] [2 2] [2 3] [2 4] [3 0] [4 0] [4 4]]
示例:使用 Numpy 函数获取一个数组内的非零值元素的位置信息。
代码如下:
import numpy as np
#------------生成一个元素都是零值的数组 a-------------------
a=np.zeros((5,5),dtype=np.uint8)
#-------随机将其中 10 个位置上的数值设置为 1------------
#---times 控制次数
#---i,j 是随机生成的行、列位置#---a[i,j]=1,将随机挑选出来的位置上的值设置为 1
for times in range(10):i=np.random.randint(0,5)j=np.random.randint(0,5)a[i,j]=1
#-------打印数组 a,观察数组 a 内值的情况-----------
print("a=\n",a)
#------查找数组 a 内非零值的位置信息------------
loc=np.transpose(np.nonzero(a))
#-----输出数组 a 内非零值的位置信息------------
print("a 内非零值的位置:\n",loc)
运行上述程序,会显示如下的运行结果:
a=
[[1 1 0 0 0]
[1 1 0 1 1]
[1 0 0 0 0]
[0 0 0 1 0]
[1 1 0 0 0]]
a 内非零值的位置:
[[0 0]
[0 1]
[1 0]
[1 1]
[1 3]
[1 4]
[2 0]
[3 3]
[4 0]
[4 1]]
示例:使用 Numpy 函数获取一个图像内的轮廓点位置。
import cv2
import numpy as np
#-----------------读取原始图像----------------------
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
#-----------------获取轮廓------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[0]#-----------------绘制空心轮廓------------------------
mask1 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask1,[cnt],0,255,2)
pixelpoints1 = np.transpose(np.nonzero(mask1))
print("pixelpoints1.shape=",pixelpoints1.shape)
print("pixelpoints1=\n",pixelpoints1)
cv2.imshow("mask1",mask1)
#-----------------绘制实心轮廓---------------------
mask2 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask2,[cnt],0,255,-1)
pixelpoints2 = np.transpose(np.nonzero(mask2))
print("pixelpoints2.shape=",pixelpoints2.shape)
print("pixelpoints2=\n",pixelpoints2)
cv2.imshow("mask2",mask2)
#-----------------释放窗口------------------------
cv2.waitKey()
cv2.destroyAllWindows()

- 左图是图像 o。
- 中间的是空心轮廓图像 mask1。
- 右图是实心轮廓图像 mask2。
同时,程序还会显示如下的运行结果:
pixelpoints1.shape= (1400, 2)
pixelpoints1=[[106 292][106 293][106 294]...[180 222][180 223][180 224]]
pixelpoints2.shape= (7892, 2)
pixelpoints2=[[107 293][107 294][107 295]...[179 221][179 222][179 223]]
使用OpenCV函数获取轮廓点
OpenCV 提供了函数 cv2.findNonZero()用于查找非零元素的索引。该函数的语法格式为:
idx = cv2.findNonZero( src )
式中:
- idx 为返回值,表示非零元素的索引位置。需要注意的是,在返回的索引中,每个元素对应的是(列号,行号)的格式。
- src 为参数,表示要查找非零元素的图像。
示例: 使用 OpenCV 函数 cv2.findNonZero()获取一个数组内的非零值。
代码如下:
import cv2
import numpy as np
#------------生成一个元素都是零值的数组 a-------------------
a=np.zeros((5,5),dtype=np.uint8)
#-------随机将其中 10 个位置上的值设置为 1------------
#---times 控制次数
#---i,j 是随机生成的行、列位置
#---a[i,j]=1,将随机挑选出来的位置上的值设置为 1
for times in range(10):i=np.random.randint(0,5)j=np.random.randint(0,5)a[i,j]=1
#-------打印数组 a,观察数组 a 内值的情况-----------
print("a=\n",a)
#------查找数组 a 内非零值的位置信息------------
loc = cv2.findNonZero(a)
#-----输出数组 a 内非零值的位置信息------------
print("a 内非零值的位置:\n",loc)
运行上述程序,会显示如下的运行结果:
a=[[1 1 0 0 0][0 0 0 0 1][0 0 1 1 0][0 0 0 0 1][0 0 0 0 0]]
a 内非零值的位置:[[[0 0]][[1 0]][[4 1]][[2 2]][[3 2]][[4 3]]]
示例:使用 OpenCV 函数 cv2.findNonZero()获取一个图像内的轮廓点的位置。
import cv2
import numpy as np
#-----------------读取原始图像----------------------
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
#-----------------获取轮廓------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[0]
#-----------------绘制空心轮廓------------------------
mask1 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask1,[cnt],0,255,2)
pixelpoints1 = cv2.findNonZero(mask1)
print("pixelpoints1.shape=",pixelpoints1.shape)
print("pixelpoints1=\n",pixelpoints1)
cv2.imshow("mask1",mask1)
#-----------------绘制实心轮廓---------------------
mask2 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask2,[cnt],0,255,-1)
pixelpoints2 = cv2.findNonZero(mask2)
print("pixelpoints2.shape=",pixelpoints2.shape)
print("pixelpoints2=\n",pixelpoints2)
cv2.imshow("mask2",mask2)
#-----------------释放窗口------------------------
cv2.waitKey()
cv2.destroyAllWindows()
- 左图是原图像 o。
- 中间的是空心轮廓图像 mask1。
- 右图是实心轮廓图像 mask2。

同时,程序还会显示如下的运行结果:
pixelpoints1.shape= (1400, 1, 2)
pixelpoints1=
[[[292 106]]
[[293 106]]
[[294 106]]
...
[[222 180]]
[[223 180]]
[[224 180]]]
pixelpoints2.shape= (7892, 1, 2)
pixelpoints2=
[[[293 107]]
[[294 107]]
[[295 107]]
...
[[221 179]]
[[222 179]]
[[223 179]]]
最大值和最小值及它们的位置
OpenCV 提供了函数 cv2.minMaxLoc(),用于在指定的对象内查找最大值、最小值及其位
置。该函数的语法格式是:
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(imgray,mask = mask)
式中的返回值为:
-
min_val:最小值。
-
max_val:最大值。
-
min_loc:最小值的位置。
-
max_loc:最大值的位置。
式中的参数如下: -
imgray:单通道图像。
-
mask:掩模。通过使用掩模图像,可以得到掩模指定区域内的最值信息。
示例:使用函数 cv2.minMaxLoc()在图像内查找掩模指定区域内的最大值、最小值及其位置。
import cv2
import numpy as np
o = cv2.imread('ct.png')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[2] #coutours[0]、coutours[1]是左侧字母 R
#--------使用掩模获取感兴趣区域的最值-----------------
#需要注意函数 minMaxLoc 处理的对象为灰度图像,本例中处理的对象为灰度图像 gray
#如果希望获取彩色图像的最值,需要提取各个通道图像,为每个通道独立计算最值
mask = np.zeros(gray.shape,np.uint8)
mask=cv2.drawContours(mask,[cnt],-1,255,-1)
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(gray,mask = mask)
print("minVal=",minVal)
print("maxVal=",maxVal)
print("minLoc=",minLoc)
print("maxLoc=",maxLoc)
#--------使用掩模获取感兴趣区域并显示-----------------
masko = np.zeros(o.shape,np.uint8)
masko=cv2.drawContours(masko,[cnt],-1,(255,255,255),-1)
loc=cv2.bitwise_and(o,masko)
cv2.imshow("mask",loc)
#显示灰度结果
#loc=cv2.bitwise_and(gray,mask)
#cv2.imshow("mask",loc)
#--------释放窗口-----------------
cv2.waitKey()
cv2.destroyAllWindows()
示例原图

- 左图是图像 o。
- 右图是掩模图像 mask。

同时,程序还会显示如下的运行结果:
minVal= 42.0
maxVal= 200.0
minLoc= (87, 90)
maxLoc= (90, 110)
平均颜色及平均灰度
OpenCV 提供了函数 cv2.mean(),用于计算一个对象的平均颜色或平均灰度。该函数的语
法格式为:
mean_val = cv2.mean(im,mask = mask)
式中的返回值为 mean_val,表示返回的平均值。
式中的参数如下:
- im:原图像。
- mask:掩模。
示例:使用函数 cv2.mean()计算一个对象的平均灰度。
import cv2
import numpy as np
#--------读取并显示原始图像-----------------
o = cv2.imread('ct.png')
cv2.imshow("original",o)
#--------获取轮廓-----------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[2] #coutours[0]、coutours[1]是左侧字母 R
#--------使用掩模获取感兴趣区域的均值-----------------
mask = np.zeros(gray.shape,np.uint8) #构造 mean 所使用的掩模(必须是单通道的)cv2.drawContours(mask,[cnt],0,(255,255,255),-1)
meanVal = cv2.mean(o,mask = mask) # mask 是一个区域,所以必须是单通道的
print("meanVal=\n",meanVal)
#--------使用掩模获取感兴趣区域并显示-----------------
masko = np.zeros(o.shape,np.uint8)
cv2.drawContours(masko,[cnt],-1,(255,255,255),-1)
loc=cv2.bitwise_and(o,masko)
cv2.imshow("mask",loc)
#--------释放窗口-----------------
cv2.waitKey()
cv2.destroyAllWindows()

- 左图是图像 o。
- 右图是获取的感兴趣区域。
同时,程序还会显示如下的运行结果:
meanVal= (85.45594913714805, 85.45594913714805, 85.45594913714805, 0.0)
从上述结果可以看出,函数 cv2.mean()能够计算各个通道的均值。上述 4 个值分别是 RGB和 A 通道(alpha
通道)的均值。本例中,RGB 三个通道的值相同,所以计算出的均值也是一样的。
极点
有时,我们希望获取某个对象内的极值点,例如最左端、最右端、最上端、最下端的四个
点。OpenCV 提供了相应的函数来找出这些点,通常的语法格式是:
leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])
topmost = tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost = tuple(cnt[cnt[:,:,1].argmax()][0])
示例: 计算一幅图像内的极值点。
import cv2
import numpy as np
o = cv2.imread('cs.bmp')
#--------获取并绘制轮廓-----------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
mask = np.zeros(gray.shape,np.uint8)
cnt=contours[0]
cv2.drawContours(mask,[cnt],0,255,-1)
#--------计算极值-----------------
leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])
topmost = tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost = tuple(cnt[cnt[:,:,1].argmax()][0])
#--------打印极值-----------------
print("leftmost=",leftmost)
print("rightmost=",rightmost)
print("topmost=",topmost)
print("bottommost=",bottommost)
#--------绘制说明文字-----------------
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'A',leftmost, font, 1,(0,0,255),2)
cv2.putText(o,'B',rightmost, font, 1,(0,0,255),2)
cv2.putText(o,'C',topmost, font, 1,(0,0,255),2)
cv2.putText(o,'D',bottommost, font, 1,(0,0,255),2)
#--------绘制图像-----------------
cv2.imshow("result",o)
#--------释放窗口-----------------
cv2.waitKey()
cv2.destroyAllWindows()
其中的A,B,C,D 就是该图像的极点

同时,程序还会显示如下的运行结果:
leftmost= (202, 135)
rightmost= (423, 120)
topmost= (369, 69)
bottommost= (216, 179)
相关文章:
opencv基础55-获取轮廓的特征值及示例
轮廓自身的一些属性特征及轮廓所包围对象的特征对于描述图像具有重要意义。本节介绍几个轮廓自身的属性特征及轮廓所包围对象的特征。 宽高比 可以使用宽高比(AspectRation)来描述轮廓,例如矩形轮廓的宽高比为: 宽高比 宽度&am…...
OpenCV图像处理——形态学操作
目录 连通性形态学操作腐蚀和膨胀开闭运算礼帽和黑帽 连通性 形态学操作 形态学转换是基于图像形状的一些简单操作。它通常在二进制图像上执行。腐蚀和膨胀时两个基本的形态学运算符。然后它的变体形式如开运算,闭运算,礼帽黑帽等 腐蚀和膨胀 cv.erode…...
修改VS Code终端的显示行数
文章目录 前言修改VS Code终端显示行数参考 前言 在我们使用VS Code运行代码的过程中,有时需要再终端中显示很多的运行过程信息或者结果。然而,VS Code的终端默认显示1000行的内容,随着显示内容的增多,之前的内容就丢失了。为了解…...
C++学习| MFC简单入门
前言:因为接手了CMFC的程序,所以需要对MFC编程方面有所了解。 C之MFC简单入门 MFC相关的概念MFCWIN32QT MFC项目基本操作MFC项目创建MFC项目文件解读界面和代码数据交互——加法器 MFC相关的概念 MFC MFC(Microsoft Foundation Classes微软…...
“一日之际在于晨”,欢迎莅临WAVE SUMMIT上午场:Arm 虚拟硬件早餐交流会
8月16日,盛夏的北京将迎来第九届WAVE SUMMIT深度学习开发者大会。在峰会主论坛正式开启前,让我们先用一份精美的元气早餐,和一场“Arm虚拟硬件交流会”,唤醒各位开发小伙伴的开发魂! 8月16日,WAVE SUMMIT大…...
leetcode454. 四数相加 II
题目:leetcode454. 四数相加 II 描述: 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 < i, j, k, l < n nums1[i] nums2[j] nums3[k] num…...
PHP证券交易员学习网站mysql数据库web结构apache计算机软件工程网页wamp
一、源码特点 PHP证券交易员学习网站 是一套完善的web设计系统,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 下载地址https://download.csdn.net/download/qq_41221322/88205549 PHP证券交易员…...
对p-n结/AlGaN/GaN HEMTs中n-GaN掺杂浓度对栅极可靠性的影响
目录 第35届功率半导体器件与集成电路国际研讨会论文集2023年5月28日至6月1日,中国香港南方科技大学电气电子工程系,深圳标题:Impacts of n-GaN Doping Concentration on Gate Reliability of p-n Junction/AlGaN/GaN HEMTs摘要信息解释研究了…...
Mac M2 Pro安装使用Cocoapods
Mac Pro M2安装使用Cocoapods 在新公司要做iOS开发,所以在新电脑上安装Cocoapods 在升级gem,sudo gem update --system,和安装cocoapods时都遇到如下的提示: ERROR: While executing gem ... (Errno::EPERM)Operation not per…...
枚举缓存工具
此文章为笔记,为阅读其他文章的感受、补充、记录、练习、汇总,非原创,感谢每个知识分享者。 文章目录 1. 背景2. 枚举缓存3. 样例展示4. 性能对比5. 总结 本文通过几种样例展示如何高效优雅的使用java枚举消除冗余代码。 1. 背景 枚举在系统…...
【BASH】回顾与知识点梳理(二十五)
【BASH】回顾与知识点梳理 二十五 二十五. 特殊shell、PAM 模块、讯息传递和大量建置账号25.1 特殊shell特殊的 shell, /sbin/nologin 25.2 PAM模块25.3 Linux 主机上的用户讯息传递查询使用者: w, who, last, lastlog使用者对谈: write, mesg, wall使用…...
什么是Node js?什么是React?有什么区别
JavaScript是当今最流行的编程语言之一,它用于开发多种技术,两种这样的技术是Node.js和React。许多学生很难理解Nodejs和React之间的区别。 React和Nodejs之间的主要区别在于它们的使用位置。Nodejs 用于开发应用程序的服务器端,而Reactjs用于…...
使用postman做接口测试
1.接口测试:针对软件对外提供服务的接口的输入输出进行测试,以及接口间相互逻辑的测试,验证接口功能与接口描述文档的一致性 2.接口测试流程: 1)获取接口信息:通过接口文档或抓包来获取接口的基本调用方式和…...
VMware Workstation 如何启用复制粘贴
产品:VMware Workstation 16 Pro 版本:16.1.1 build-17801498 我们刚安装好的 VMware Workstation 会发现无法复制粘贴文件到虚拟机中,如下为解决方案: 1.点击 虚拟机,点击 安装 VMware Tools(T)...。 2.虚拟机下面会…...
免费小程序商城搭建之b2b2c o2o 多商家入驻商城 直播带货商城 电子商务b2b2c o2o 多商家入驻商城 直播带货商城 电子商务 bbc
1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前端…...
VSCode-Python传参数进行Debug
新建demo.py import argparse def parse_args():description "debug example" parser argparse.ArgumentParser(descriptiondescription) help "The path of address"parser.add_argument(--host,help help) parser.add_ar…...
实践-传统深度学习
简介与安装 2 训练自己的数据集整体流程3 数据加载与预处理4 搭建网络模型5 学习率对结果的影响6 Drop-out操作7 权重初始化方法对比8 初始化标准差对结果的影响9 正则化对结果的影响10 加载模型进行测试 TensorFlow:每一步都需要自己做。 Keras:做起来更…...
爬虫:使用Selenium模拟人工操作及获取网页内容
专栏介绍 结合自身经验和内部资料总结的Python教程,每天3-5章,最短1个月就能全方位的完成Python的学习并进行实战开发,学完了定能成为大佬!加油吧!卷起来! 全部文章请访问专栏:《Python全栈教程(0基础)》 再推荐一下最近热更的:《大厂测试高频面试题详解》 该专栏对…...
AOP开发
目录 1、简介 1.1、AOP 相关概念 1.2、AOP 开发明确的事项 1.3、知识要点 2、两种方式 3、基于 XML 3.1、快速入门 3.1.1、导入坐标 3.1.2、创建接口和实现类 3.1.3、创建切面 3.1.4、配置bean 3.1.5、配置织入 3.1.6、测试 3.2、切点表达式 3.2.1、表达式举例 …...
Streamlit项目: 轻松搭建部署个人博客网站
文章目录 1 前言1.1 探索 Streamlit:轻松创建交互式应用1.2 最全 Streamlit 教程专栏 2 我的个人博客网站已上线!2.1 一个集成了智能中医舌诊-中e诊专栏的博客网站2.2 前期准备2.3 使用 Streamlit Cloud 运行 3 知识点讲解3.1 实现多页面:两种…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
