当前位置: 首页 > news >正文

LeetCode 1289. 下降路径最小和 II:通俗易懂地讲解O(n^2) + O(1)的做法

【LetMeFly】1289.下降路径最小和 II:通俗易懂地讲解O(n^2) + O(1)的做法

力扣题目链接:https://leetcode.cn/problems/minimum-falling-path-sum-ii/

给你一个 n x n 整数矩阵 arr ,请你返回 非零偏移下降路径 数字和的最小值。

非零偏移下降路径 定义为:从 arr 数组中的每一行选择一个数字,且按顺序选出来的数字中,相邻数字不在原数组的同一列。

 

示例 1:

输入:arr = [[1,2,3],[4,5,6],[7,8,9]]
输出:13
解释:
所有非零偏移下降路径包括:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
下降路径中数字和最小的是 [1,5,7] ,所以答案是 13 。

示例 2:

输入:grid = [[7]]
输出:7

 

提示:

  • n == grid.length == grid[i].length
  • 1 <= n <= 200
  • -99 <= grid[i][j] <= 99

方法一:动态规划

这道题其实思路很简单:

  1. gird[i][j]来自gird[i - 1]的哪一个?当然是gird[i - 1]中最小的那一个。
  2. 如果grid[i - 1]中最小的那个元素恰好是j怎么办?那么gird[i][j]就来自gird[i - 1]中第二小的那一个。

不难发现,我们只关注上一行最小的两个元素(的位置)

具体实现

写一个函数findMin2(v),用来寻找数组v中最小的两个元素的位置。

i i i从第2行开始遍历地图grid:

  • j j j遍历 g i r d [ i ] gird[i] gird[i]
    • 如果 j j j等于上一行最小元素的下标: g r i d [ i ] [ j ] + = g r i d [ i − 1 ] [ 第二小元素的下标 ] grid[i][j] += grid[i - 1][第二小元素的下标] grid[i][j]+=grid[i1][第二小元素的下标]
    • 否则 g r i d [ i ] [ j ] + = g r i d [ i − 1 ] [ 最小元素的下标 ] grid[i][j] += grid[i - 1][最小元素的下标] grid[i][j]+=grid[i1][最小元素的下标]

最终返回最后一行的最小元素即可。

  • 时间复杂度 O ( n 2 ) O(n^2) O(n2),其中 s i z e ( g i r d ) = n × n size(gird) = n\times n size(gird)=n×n
  • 空间复杂度 O ( 1 ) O(1) O(1)

AC代码

C++

class Solution {
private:pair<int, int> findMin2(vector<int>& v) {  // 只接收长度大于等于2的vpair<int, int> ans;int m = v[0], loc = 0;for (int i = 0; i < v.size(); i++) {if (v[i] < m) {m = v[i], loc = i;}}ans.first = loc;loc = ans.first ? 0 : 1, m = v[loc];  // 如果第一个元素是最小的,那么找第二个最小元素的时候就从上一行的第二个元素开始for (int i = 0; i < v.size(); i++) {if (v[i] < m && i != ans.first) {m = v[i], loc = i;}}ans.second = loc;return ans;}
public:int minFallingPathSum(vector<vector<int>>& grid) {int n = grid.size();for (int i = 1; i < n; i++) {pair<int, int> last2min = findMin2(grid[i - 1]);  // i >= 1说明grid[i - 1].size() >= 2for (int j = 0; j < n; j++) {grid[i][j] += (j == last2min.first ? grid[i - 1][last2min.second] : grid[i - 1][last2min.first]);}}return *min_element(grid.back().begin(), grid.back().end());}
};

Python

# from typing import Listclass Solution:def findMin2(self, v: List[int]) -> List[int]:ans = [0, 0]m, loc = v[0], 0for i in range(len(v)):if v[i] < m:m, loc = v[i], ians[0] = locloc = 0 if ans[0] else 1m = v[loc]for i in range(len(v)):if v[i] < m and i != ans[0]:m, loc = v[i], ians[1] = locreturn ansdef minFallingPathSum(self, grid: List[List[int]]) -> int:n = len(grid)for i in range(1, n):last2min = self.findMin2(grid[i - 1])for j in range(n):grid[i][j] += grid[i - 1][last2min[0]] if j != last2min[0] else grid[i - 1][last2min[1]]return min(grid[-1])

同步发文于CSDN,原创不易,转载请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/132201281

相关文章:

LeetCode 1289. 下降路径最小和 II:通俗易懂地讲解O(n^2) + O(1)的做法

【LetMeFly】1289.下降路径最小和 II&#xff1a;通俗易懂地讲解O(n^2) O(1)的做法 力扣题目链接&#xff1a;https://leetcode.cn/problems/minimum-falling-path-sum-ii/ 给你一个 n x n 整数矩阵 arr &#xff0c;请你返回 非零偏移下降路径 数字和的最小值。 非零偏移下…...

Coin Change

一、题目 Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make changes with these coins for a given amount of money. For example, if we have 11 cents, then we can make changes with one 10-cent coin and one 1-c…...

2023 8 -14链表OJ

&#x1f495;人面只今何处去&#xff0c;桃花依旧笑春风&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;详解链表OJ题 题目一&#xff1a;环形链表&#xff08;判断链表是否带环&#xff09; 题目描述&#xff1a; 画图分析&#xff1a; 代码实现&#x…...

大数据必回之LSM树

LSM树&#xff08;Log-Structured-Merge-Tree&#xff09;并不像B、红黑树一样是一颗严格的树状数据结构&#xff0c;它其实是一种存储结构&#xff0c;像HBase、RocksDB这些NoSQL存储都是采用LSM树。它是一种分层、有序、面向磁盘的数据结构&#xff0c;核心思想是顺序写性能远…...

Vue中的Object.defineProperty详解

Vue中的Object.defineProperty是一个比较重要的方法&#xff0c;它是可以定义对象中属性的一个方法&#xff0c;相比于在对象中直接定义的对象&#xff0c;它更具有灵活性。 直接定义对象中的属性是这样的&#xff1a; let person {name:张三,address:广东,age:12,} 而Object.…...

MySQL高阶知识点(一)一条SQL【更新】语句是如何执行的

一条SQL【更新】语句是如何执行的 首先&#xff0c;可以确定的说&#xff0c;【查询】语句的那一套流程&#xff0c;【更新】语句也是同样会走一遍&#xff0c;与查询流程不一样的是&#xff0c; 更新语句涉及到【事务】&#xff0c;就必须保证事务的四大特性&#xff1a;ACID&…...

threejs实现模型gltf的动画效果

确保加载模型后模型有animations属性。加载完模型后&#xff0c;在模型中定义mixer的变量值。 // 4、加入加载器 const loader new GLTFLoader(); loader.load("./model/gltf/RobotExpressive/RobotExpressive.glb", function (gltf) {// 赋值动画给mixermixer ne…...

Harmony创建项目ohpm报错

Harmony创建FA模型的项目时报如下错&#xff1a; The registry is empty - edit .ohpmrc file or use "ohpm config set registry your_registry" command to set registry.解决方法&#xff1a; File -> Settings -> Build,Execution,Deployment -> Ohpm …...

44 | 酒店预订及取消的数据分析

1.背景介绍 数据集来自Kaggle网站上公开的Hotel booking demand项目 该数据集包含了一家城市酒店和一家度假酒店的预订信息,包括预订时间、入住时间、成人、儿童或婴儿数量、可用停车位数量等信息。 数据集容量约为12万32 本次数据分析主要包含如下内容: 总览数据,完成对…...

物联网和不断发展的ITSM

物联网将改变社会&#xff0c;整个技术行业关于对机器连接都通过嵌入式传感器、软件和收集和交换数据的电子设备每天都在更新中。Gartner 预测&#xff0c;全球将有4亿台互联设备投入使用。 无论企业采用物联网的速度如何&#xff0c;连接设备都将成为新常态&#xff0c;IT服务…...

加了ComponentScan,但是feign接口无法注入的原因

正文 正确的注入 如果发现无法注入&#xff1a;看看启动类Application是否有加入注解&#xff1a;EnableFeignClients(AppConstant.BASE_PACKAGES) 注意&#xff1a;EnableFeignClients和ComponentScan是两个独立的扫描&#xff0c;所以&#xff0c;如果只配置了ComponentSca…...

C#Winform中DataGridView控件显示行号实例

本文演示C#Winform中如何给DataGridView控件显示行号。 首先创建winform项目,添加DataGridView控件,给控件添加两列。 修改CS代码: using System.Windows.Forms;namespace DataGridviewDemo {public partial class Form1 : Form{public Form1(){InitializeComponent();//添…...

Stable Diffusion WebUI安装和使用教程(Windows)

目录 下载Stable Diffusion WebUI运行安装程序&#xff0c;双击webui.bat界面启动插件安装&#xff08;github&#xff09;模型下载(有些需要魔法&#xff09;安装过程遇到的大坑总结参考的博客 整个过程坑巨多&#xff0c;我花了一个晚上的时间才全部搞定,本教程针对有编程基础…...

LeetCode 35题:搜索插入位置

题目 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2示例 2:…...

Linux系统中常见的几种软件包管理器

软件包管理器 DPKGAPT&#xff08;APT-GET&#xff09;RPMYUMDNF Linux软件包管理工具是一组命令的集合&#xff0c;其作用是在操作系统中提供安装、更新、删除及卸载软件的方法&#xff0c;同时提供对系统中所有软件状态信息的查询。不同的Linux发行版会有不同的包管理器&…...

python异步IO完全指南

原地址&#xff1a;https://flyingbyte.cc/post/async_io/ python异步IO完全指南 做为一种并行编程的範式&#xff0c;异步IO在Python中非常受重视&#xff0c;从Python3.4到3.7快速演进。 我们已经有多线程&#xff0c;多进程&#xff0c;并发&#xff08;concurrency&#x…...

打造企业或者个人IP引流法

打造企业或者个人IP引流法. 大家好&#xff0c;我是百收网SEO编辑&#xff1a;狂潮老师&#xff0c;今天给大家分享企业IP打造的方法 首先我们想让人知道你的企业叫什么&#xff0c;怎么找到你的企业 这个时候我们就需要去各大平台发布信息&#xff0c;客户想了解直接去搜索…...

TMC Self-Managed 提升跨多云环境安全性

作为云原生技术栈的关键技术之一&#xff0c;Kubernetes 被企业用户广泛试用并开始支撑实际业务应用运行&#xff0c;实现技术先进性带来的生产力提升。但与此同时&#xff0c;随着 Kubernetes 技术的不断广泛与深化使用&#xff0c;企业用户也开始面临诸多技术上的挑战&#x…...

并发编程 - 线程间三种常见的通信手段

线程间通信是指多个线程之间通过某种机制进行协调和交互&#xff0c;例如&#xff1a;线程等待和通知机制就是线程通讯的主要手段之一。 在 Java 中有以下三种实现线程等待的手段 &#xff1a; Object 类提供的 wait()&#xff0c;notify() 和 notifyAll() 方法&#xff1b;C…...

iperf3命令使用说明

iperf3 是一款网络性能测试工具&#xff0c;用于在TCP和UDP数据流之间测量最大带宽。它可以帮助您测试网络连接的速度、延迟、丢包等参数。以下是一些常用的选项和参数的解释&#xff1a; 通用选项&#xff1a; -s 或 --server&#xff1a;运行服务器模式。-c 或 --client &l…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...