DP——动态规划
DP——动态规划
- 动态规划算法
- 动态规划的一般步骤
- 特殊DP——背包
- 0-1背包问题
- 完全背包问题
- 总结
动态规划算法
当涉及到解决具有重叠子问题的优化问题时,动态规划是一种常用的算法技术。它通过将问题分解为一系列重叠子问题,并使用递归或迭代的方式来解决这些子问题,最终得到问题的最优解。
动态规划的核心思想是将原始问题分解为更小的子问题,并通过解决这些子问题来构建原始问题的解。在解决子问题时,动态规划会将子问题的解保存起来,以便在需要时进行重复使用,从而避免了重复计算。
动态规划的一般步骤
要实现动态规划算法,可以按照以下步骤进行:
确定问题的状态:首先,需要确定问题的状态,这些状态应该能够唯一地表示问题的子问题。状态可以是一个或多个变量的组合,可以是一个数字、一个数组、一个矩阵等,具体取决于问题的性质。
-
定义状态转移方程:根据问题的定义和性质,确定问题的状态之间的转移关系,即如何从一个状态转移到另一个状态。这个方程通常是基于递推关系或者最优子结构性质来定义的。
-
确定初始条件:确定最小子问题的解,即初始状态的值。这些初始条件是问题的边界条件,用于开始递推计算。
-
确定计算顺序:确定计算子问题解的顺序,通常是从最小子问题开始,逐步计算更大的子问题,直到计算出原始问题的解。这个顺序可以是自顶向下的递归方式,也可以是自底向上的迭代方式。
-
计算最优解:根据状态转移方程和初始条件,计算出原始问题的最优解。可以使用递归或迭代的方式进行计算。
-
构建最优解:根据计算出的最优解和保存的中间结果,构建出原始问题的最优解。这一步通常是通过回溯或者追踪中间结果的方式进行。
需要注意的是,动态规划算法的实现可以使用递归或迭代的方式,具体取决于问题的性质和计算效率的要求。在实现过程中,可以使用数组、矩阵或者哈希表等数据结构来保存中间结果,以便在需要时进行查找和使用。
特殊DP——背包
背包问题是一个经典的优化问题,它可以通过动态规划算法进行求解。在背包问题中,有一个背包和一组物品,每个物品都有自己的重量和价值。目标是选择一些物品放入背包中,使得放入背包的物品总重量不超过背包的容量,同时使得放入背包的物品总价值最大化。
背包问题可以分为两种类型:0-1背包问题和无限背包问题。
0-1背包问题
每个物品只能选择放入背包一次或不放入。即物品的选择是一个二进制的决策。这种情况下,动态规划的状态可以定义为“在前i个物品中,背包容量为j时的最大价值”。状态转移方程可以表示为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 其中,dp[i][j]表示前i个物品中,背包容量为j时的最大价值,w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
完全背包问题
每个物品可以选择放入背包多次,即物品的选择是一个非负整数。这种情况下,动态规划的状态可以定义为“在前i个物品中,背包容量为j时的最大价值”。状态转移方程可以表示为: dp[i][j] = max(dp[i-1][j], dp[i][j-w[i]] + v[i]) 其中,dp[i][j]表示前i个物品中,背包容量为j时的最大价值,w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
动态规划算法的实现步骤如下:
-
定义问题的状态:确定状态的定义,即dp数组的含义和维度。
-
初始化:根据问题的定义,初始化dp数组的初始值。
-
状态转移:根据状态转移方程,使用循环遍历物品和背包容量,更新dp数组的值。
-
返回结果:根据问题的定义,从dp数组中获取最优解的值。
-
可选的步骤:如果需要构建最优解的具体物品组合,可以使用额外的数据结构(如二维数组或哈希表)来保存选择的信息,然后根据这些信息构建最优解。
通过以上步骤,可以使用动态规划算法解决背包问题,并得到最优的物品选择方案和总价值。
总结
总结起来,实现动态规划算法的关键在于确定问题的状态和状态转移方程,并按照计算顺序进行递推或迭代计算,最终得到原始问题的最优解。
相关文章:
DP——动态规划
DP——动态规划 动态规划算法动态规划的一般步骤特殊DP——背包0-1背包问题完全背包问题 总结 动态规划算法 当涉及到解决具有重叠子问题的优化问题时,动态规划是一种常用的算法技术。它通过将问题分解为一系列重叠子问题,并使用递归或迭代的方式来解决…...

【Windows 11】安装 Android子系统 和 Linux子系统
本文使用电脑系统: 文章目录 一、安卓子系统1.1 安装 WSA1.2 使用 二、Linux子系统2.1 安装 WSL 以及WSL 相关概念2.2 安装一个Linux发行版2.21 从Microsoft Store 安装2.22 用命令安装 2.23 拓展 三、拓展3.1 存储位置3.2 虚拟化技术3.3 Windows 虚拟内存3.3 wsl …...

秒杀库存解决方案
电商系统中秒杀是一种常见的业务场景需求,其中核心设计之一就是如何扣减库存。本篇主要分享一些常见库存扣减技术方案,库存扣减设计选择并非一味追求性能更佳,更多的应该考虑根据实际情况来进行架构取舍。在商品购买的过程中,库存…...

[免费在线] 将 PDF 转换为 Excel 或 Excel 转换为 PDF | 5 工具
有了免费的在线 PDF 转换器,您可以轻松免费在线将 PDF 转换为 Excel 或 Excel 转换为 PDF。这篇文章为您筛选了 5 个最常用的工具。要从存储介质恢复错误删除或丢失的 PDF 文档、Excel 电子表格、Word 文件或任何其他文件,您可以使用免费的数据恢复程序 …...
PLC求解弹簧质量模型微分方程数值解(RK4梯形图程序)
微分方程的数值求解,属于数学分析类课程涉及的内容。大家可以参看相关书籍对Runge-Kutta法的介绍,弹簧质量阻尼模型详细的微分方程介绍可以查看下面文章,链接如下: 弹簧质量阻尼系统前馈PID位置控制(PLC闭环仿真SCL+ST代码)_RXXW_Dor的博客-CSDN博客带前馈控制的博途PID程…...

CSDN编程题-每日一练(2023-08-14)
CSDN编程题-每日一练(2023-08-14) 一、题目名称:小股炒股二、题目名称:王子闯闸门三、题目名称:圆小艺 一、题目名称:小股炒股 时间限制:1000ms内存限制:256M 题目描述: …...
【SA8295P 源码分析】69 - Android 侧添加支持 busybox telnetd 服务
【SA8295P 源码分析】69 - Android 侧添加支持 busybox telnetd 服务 一、下载 busybox-1.36.1.tar.bz2 源码包二、编译 busybox 源码三、将编译后的 busybox 打包编入Android 镜像中系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》 本文链接:《【SA8295P 源码…...

OpenCV图像处理——模版匹配和霍夫变换
目录 模版匹配原理实现 霍夫变换霍夫线检测 模版匹配 原理 实现 rescv.matchTemplate(img,template,method)import numpy as np import cv2 as cv import matplotlib.pyplot as pltimgcv.imread(./汪学长的随堂资料/6/模板匹配/lena.jpg) templatecv.imread(./汪学长的随堂资…...

面试官的几句话,差点让我挂在HTTPS上
♥ 前 言 作为软件测试,大家都知道一些常用的网络协议是我们必须要了解和掌握的,比如 HTTP 协议,HTTPS 协议就是两个使用非常广泛的协议,所以也是面试官问的面试的时候问的比较多的两个协议;而且因为这两个协议有相…...
C语言char**,char*,char s[]赋值
目录 前言 赋值方法 char s[]: char* char** 问题 修改字符串常量 前言 char**,char*,char s[]赋值的方式是不同的,当你搞混的时候,系统会报出段错误(Segmentation Fault),所…...

一、Kubernetes介绍与集群架构
Kubernetes介绍与集群架构 一、认识容器编排工具 docker machine 主要用于准备docker host现已弃用建议使用docker desktop docker compose Compose 是一个用于定义和运行多容器 Docker 应用程序的工具。使用 Compose,您可以使用 YAML 文件来配置应用程序的服务。…...

基于C#UI Automation自动化测试
步骤 UI Automation 只适用于,标准的win32和 WPF程序 需要添加对UIAutomationClient、 UIAutomationProvider、 UIAutomationTypes的引用 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.D…...

深入了解Linux运维的重要性与最佳实践
Linux作为开源操作系统的代表,在企业级环境中的应用越来越广泛。而在保障Linux系统的正常运行和管理方面,Linux运维显得尤为关键。本文将介绍Linux运维的重要性以及一些最佳实践,帮助读者更好地了解和掌握Linux系统的运维技巧。 首先…...
90 | Python人工智能篇 —— 深度学习算法 Keras基于卷积神经网络的情感分类
情感分类是自然语言处理(NLP)领域的一个重要任务,它旨在将文本划分为积极、消极或中性等不同情感类别。深度学习技术,尤其是卷积神经网络(CNN),在情感分类任务中取得了显著的成果。Keras作为一个高级的深度学习框架,提供了便捷易用的工具来构建和训练情感分类模型。 文…...
自然语言处理从入门到应用——LangChain:记忆(Memory)-[记忆的类型Ⅲ]
分类目录:《自然语言处理从入门到应用》总目录 对话令牌缓冲存储器ConversationTokenBufferMemory ConversationTokenBufferMemory在内存中保留了最近的一些对话交互,并使用标记长度来确定何时刷新交互,而不是交互数量。 from langchain.me…...
【ARM 嵌入式 编译系列 10.3 -- GNU elfutils 工具小结】
文章目录 什么是 GNU elfutils?GNU elfutils 常用工具有哪些?objcopy 常用参数有哪些?GNU binutils和GNU elfutils区别是什么? 上篇文章:ARM 嵌入式 编译系列 10.2 – 符号表与可执行程序分离详细讲解 什么是 GNU elfu…...

黑马项目一阶段面试 项目介绍篇
我完成了一个外卖项目,名叫苍穹外卖,是跟着黑马程序员的课程来自己动手写的。 项目基本实现了外卖客户端、商家端的后端完整业务。 商家端分为员工管理、文件上传、菜品管理、分类管理、套餐管理、店铺营业状态、订单下单派送等的管理、数据统计等&…...
重构内置类Function原型上的call方法
重构内置类Function原型上的call方法 // > 重构内置类Function原型上的call方法 ~(function () {/*** call: 改变函数中的this指向* params* context 可以不传递,传递必须是引用类型的值,因为后面要给它加 fn 属性**/function myCall(context) {/…...

Nginx之lnmp架构
目录 一.什么是LNMP二.LNMP环境搭建1.Nginx的搭建2.安装php3.安装数据库4.测试Nginx与PHP的连接5.测试PHP连接数据库 一.什么是LNMP LNMP是一套技术的组合,Llinux,Nnginx,Mmysql,Pphp 首先Nginx服务是不能处理动态资源请求&…...

C# 使用FFmpeg.Autogen对byte[]进行编解码
C# 使用FFmpeg.Autogen对byte[]进行编解码,参考:https://github.com/vanjoge/CSharpVideoDemo 入口调用类: using System; using System.IO; using System.Drawing; using System.Runtime.InteropServices; using FFmpeg.AutoGen;namespace F…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...

Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...