当前位置: 首页 > news >正文

时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)

目录

    • 时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)
      • 预测结果
      • 基本介绍
      • 程序设计
      • 参考资料

预测结果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现BP神经网络时间序列预测未来(完整源码和数据)
1.Matlab实现BP神经网络时间序列预测未来;
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价),同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价);
  • 完整程序和数据下载方式3(订阅《BP神经网络》专栏,同时可阅读《BP神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价),专栏外只能获取该程序
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  创建网络
net = newff(p_train, t_train, 5);%%  设置训练参数
net.trainParam.epochs = 1000;     % 迭代次数 
net.trainParam.goal = 1e-6;       % 误差阈值
net.trainParam.lr = 0.01;         % 学习率%%  训练网络
net= train(net, p_train, t_train);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 Matlab实现BP神经网络时间序列预测未来(完整…...

组合模式(C++)

定义 将对象组合成树形结构以表示部分-整体’的层次结构。Composite使得用户对单个对象和组合对象的使用具有一致性(稳定)。 应用场景 在软件在某些情况下,客户代码过多地依赖于对象容器复杂的内部实现结构,对象容器内部实现结构(而非抽象接口)的变化…...

git上传问题记录

unable to access ‘https://github.com/songjiahao-wq/untitled.git/’: Failed to connect to github.com port 443 after 21086 ms: Couldn’t connect to serve 解决办法:修改 Git 的网络设置 打开git Bash运行,clash代理一般是下面的端口 # 注意…...

通过动态IP解决网络数据采集问题

动态地址的作用 说到Python网络爬虫,很多人都会遇到困难。最常见的就是爬取过程中IP地址被屏蔽。虽然大部分都是几个小时内自动解封的,但这对于分秒必争的python网络爬虫来说,是一个关键性的打击!当一个爬虫被阻塞时,…...

可重入锁,不可重入锁,死锁的多种情况,以及产生的原因,如何解决,synchronized采用的锁策略(渣女圣经)自适应的底层,锁清除,锁粗化,CAS的部分应用

一、💛 锁策略——接上一篇 6.分为可重入锁,不可重入锁 如果一个线程,针对一把锁,连续加锁两次,会出现死锁,就是不可重入锁,不会出现死锁,就是可重入锁。 如果一个线程,针…...

JSON.parse()和JSON.stringify()用法

JSON.parse() 方法用于将 JSON 格式的字符串转换为 JavaScript 对象,而 JSON.stringify() 方法用于将 JavaScript 对象转换为 JSON 字符串。这两个方法可以组合使用来实现将数据从对象到字符串再到对象的转换。 示例 // 创建一个包含属性的 JavaScript 对象 var pe…...

Android 并发编程--阻塞队列和线程池

一、阻塞队列 队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作…...

Playwright快速上手-1

前言 随着近年来对UI自动化测试的要求越来越高,,功能强大的测试框架也不断的涌现。本系列主讲的Playwright作为一款新兴的端到端测试框架,凭借其独特优势,正在逐渐成为测试工程师的热门选择。 本系列文章将着重通过示例讲解 Playwright python开发环境的搭建 …...

PPT颜色又丑又乱怎么办?

一、设计一套PPT时,可以从这5个方面进行设计 二、PPT颜色 (一)、PPT常用颜色分类 一个ppt需要主色、辅助色、字体色、背景色即可。 (二)、搭建PPT色彩系统 设计ppt时,根据如下几个步骤,依次选…...

python计算相关系数R

方法一: import numpy as np# 计算相关系数R def r(y_true, y_pred):y_true np.array(y_true)y_pred np.array(y_pred)corr np.corrcoef(y_true, y_pred)[0][1]return corrcorr r(yture, ypred)方法二 import scipy.stats # 计算皮尔逊相关指数,并…...

黑马项目一阶段面试 自我介绍篇

面试官你好,我叫xxx,是来自xxxx的本科毕业生。我通过招聘网站/内推/线下招聘了解到的贵司,我具有扎实的Java后端的基础功底,基本掌握JavaSE、JavaEE流行技术的使用,并且我比较好学,心态也很乐观积极&#x…...

时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测 目录 时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现CNN-BiGRU-Attention时间序列预测,CNN-BiGRU-Attention结合注意力机制时…...

开发过程中遇到的问题以及解决方法

巩固基础,砥砺前行 。 只有不断重复,才能做到超越自己。 能坚持把简单的事情做到极致,也是不容易的。 开发过程中遇到的问题以及解决方法 简单易用的git命令 git命令: 查看有几个分支:git branch -a 切换分支&#…...

本地oracle登录账号锁定处理,the account is locked

1.打开cmd命令窗口 2.打开sqlplus: sqlplus /nolog(加/nolog是不登录服务器的意思,不加就需要输账号密码) 3.切换到管理员:conn / as sysdba; 第2步第3步可以合并,直接使用sysdba登录:sqlplus / as sysdba; 4.解锁账号&#x…...

redission自定义hessian序列化

一。技术改造背景 由于之前的比较陈旧的技术,后面发起了技术改造,redis整体改后使用redisson框架。 二。问题 改造完成后,使用方反馈 缓存获取异常 异常信息如下 Caused by: java.io.CharConversionException: Unexpected EOF in the mid…...

P8642 [蓝桥杯 2016 国 AC] 路径之谜

[蓝桥杯 2016 国 AC] 路径之谜 题目描述 小明冒充 X X X 星球的骑士,进入了一个奇怪的城堡。 城堡里边什么都没有,只有方形石头铺成的地面。 假设城堡地面是 n n n\times n nn 个方格。如图所示。 按习俗,骑士要从西北角走到东南角。 …...

oracle sql developer批量删除某个用户

随着navicate收费,还得破解,pl/sql developer配置麻烦,最近使用oracle sql developer来试试oracle的操作如何; 用着还行,没有卡顿现象, 最近要oracle sql developer批量删除某个用户下所有的表&#xff0…...

k8s 滚动更新控制(一)

在传统的应用升级时,通常采用的方式是先停止服务,然后升级部署,最后将新应用启动。这个过程面临一个问题,就是在某段时间内,服务是不可用的,对于用户来说是非常不友好的。而kubernetes滚动更新,…...

Java智慧工地APP源码带AI识别

智慧工地为建筑全生命周期赋能,用创新的可视化与智能化方法,降低成本,创造价值。 一、智慧工地APP概述 智慧工地”立足于互联网,采用云计算,大数据和物联网等技术手段,针对当前建筑行业的特点,…...

ME3116电源小板

最近设计一款PCB的时候使用微盟的dc dc电源ic踩了一个坑。 在使用me3116作为24v到5v的降压ic作为esp32系统前级的降压电路时,再没有铂电阻采样负载的情景下工作正常,带上负载后,ic工作不正常,过一段时间,后级电路会烧…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...