Android 网络协议与网络编程
一、TCP/IP协议
Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联 协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP 协议组成。协议采用了4层的层级结构。然而在很多情况下,它是利用 IP 进行通信时所必须用到的 协议群的统称。
对于TCP/IP四层模型我们可以简单的理解为:
网络接入层:将需要互相连接的节点接入网络中,从而为数据传输提供条件。
网际互联层:找到要传输数据的目标节点。(IP协议)
传输层:实际传输数据。(TCP、UDP协议)
应用层:使用接受到的数据(HTTP、HTTPS、DNS协议)
二、TCP与UDP协议
1、TCP协议
Transmission Control Protocol,传输控制协议,是一种传输层通信协议。
特点:
面向连接、面向字节流、全双工通信、可靠
面向连接:指的是要使用TCP传输数据,必须先建立TCP连接,传输完成后释放连接,就像打电话一样必须先拨号建立一条连接,打完后挂机释放连接。
全双工通信:即一旦建立了TCP连接,通信双方可以在任何时候都能发送数据。
可靠的:指的是通过TCP连接传送的数据,无差错,不丢失,不重复,并且按序到达。
面向字节流:流,指的是流入到进程或从进程流出的字符序列。简单来说,虽然有时候要传输的数据流太大,TCP报文长度有限制,不能一次传输完,要把它分为好几个数据块,
但是由于可靠性保证,接收方可以按顺序接收数据块然后重新组成分块之前的数据流,所以TCP看起来就像直接互相传输字节流一样,面向字节流。
TCP建立连接:
必须进行三次握手:若A要与B进行连接,则必须 :
第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认。即A发送信息给B;
第二次握手:服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认。即B收到连接信息后向A返回确认信息;
第三次握手:客户端收到服务器的(SYN+ACK)报文段,并向服务器发送ACK报文段。即A收到确认信息后再次向B返回确认连接信息(此时,A告诉自己上层连接建立;B收到连接信息后告诉上层连接建立。)
这样就完成TCP三次握手 = 一条TCP连接建立完成 = 可以开始发送数据
为什么TCP建立连接需要三次握手?
防止服务器端因为接收了早已失效的连接请求报文从而一直等待客户端请求,从而浪费资源。
TCP释放连接四次挥手
现在假设A主动释放连接:(数据传输结束后,通信的双方都可释放连接),其释放TCP连接的过程如下:
第一次握手: A发送释放信息到B;(发出去之后,A->B发送数据这条路径就断了)
第二次握手: B收到A的释放信息之后,回复确认释放的信息:我同意你的释放连接请求;
第三次握手: B发送“请求释放连接“信息给A;
第四次握手: A收到B发送的信息后向B发送确认释放信息:我同意你的释放连接请求。
首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
为什么TCP释放连接需要四次挥手?
为了保证双方都能通知对方“需要释放连接”,即在释放连接后都无法接收或发送消息给对方。
需要明确的是:TCP是全双工模式,这意味着是双向都可以发送、接收的;
释放连接的定义是:双方都无法接收或发送消息给对方,是双向的;
当主机1发出“释放连接请求”(FIN报文段)时,只是表示主机1已经没有数据要发送 / 数据已经全部发送完毕; 但是,这个时候主机1还是可以接受来自主机2的数据。
当主机2返回“确认释放连接”信息(ACK报文段)时,表示它已经知道主机1没有数据发送了,但此时主机2还是可以发送数据给主机1;
当主机2也发送了FIN报文段时,即告诉主机1我也没有数据要发送了,此时,主机1和2已经无法进行通信:主机1无法发送数据给主机2,主机2也无法发送数据给主机1,此时,TCP的连接才算释放。
2、UDP协议
User Data Protocol 用户数据报协议,是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去!
特点:
无连接的、不可靠的、面向报文、没有拥塞控制
无连接的:和TCP要建立连接不同,UDP传输数据不需要建立连接,就像写信,在信封写上收信人名称、地址就可以交给邮局发送了,至于能不能送到,就要看邮局的送信能力和送信过程的困难程度了。
不可靠的:因为UDP发出去的数据包发出去就不管了,不管它会不会到达,所以很可能会出现丢包现象,使传输的数据出错。
面向报文:数据报文,就相当于一个数据包,应用层交给UDP多大的数据包,UDP就照样发送,不会像TCP那样拆分。
没有拥塞控制:拥塞,是指到达通信子网中某一部分的分组数量过多,使得该部分网络来不及处理,以致引起这部分乃至整个网络性能下降的现象,严重时甚至会导致网络通信业务陷入停顿,即出现死锁现象,就像交通堵塞一样。TCP建立连接后如果发送的数据因为信道质量的原因不能到达目的地,它会不断重发,有可能导致越来越塞,所以需要一个复杂的原理来控制拥塞。而UDP就没有这个烦恼,发出去就不管了。
3、TCP与UDP区别总结:
1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接;
2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保 证可靠交付;
3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等);
4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信;
5、TCP首部开销20字节;UDP的首部开销小,只有8个字节;
6、TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道。
三、Http与Https协议
1、Http协议
HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网 (WWW:World Wide Web )服务器传输超文本到本地浏览器的传送协议。是应用层协议,在TCP/IP协议接收到数据之后通过HTTP协议来解析才可以使用。
Http的请求过程 :
1、域名解析
2、发起TCP的3次握手
3、建立TCP连接后发起Http请求
4、服务器端响应Http请求,并回传数据
5、客户端获取数据并解析展示在前端界面
6、关闭 TCP 连接
Http的特点:
HTTP连接最显著的特点是客户端发送的每次请求都需要服务器回送响应,在请求结束后,会主动释放连接。从建立连接到关闭连接的过程称为“一次连接”。
HTTP的缺点:
HTTP虽然使用极为广泛, 但是却存在不小的安全缺陷,主要有以下3点:
1)明文传送。HTTP协议无法加密数据,所有通信数据都在网络中明文“裸奔”。通过网络的嗅探设备及一些技术手段,就可以窃取http的内容。
2)无法证明报文的完整性。HTTP在传输客户端请求和服务端响应时, 唯一的数据完整性检验就是在报文头部包含了本次传输数据的长度, 而对内容是否被篡改不作确认。因此攻击者可以轻易的发动中间人攻击, 修改客户端和服务端传输的数据, 甚至在传输数据中插入恶意代码, 导致客户端被引导至恶意网站被植入木马。
3)不验证通信方的身份。黑客可以伪装他人身份进通信。HTTP协议中的请求和响应不会对通信方进行确认。在HTTP协议通信时,由于不存在确认通信方的处理步骤,任何人都可以发起请求。另外,服务器只要接收到请求,不管对方是谁都会返回一个响应。
2、Https协议
Https是一种Http加密安全版的协议,在Http连接的基础上,对数据采用SSL的加密方式,使得在没有密钥的情况下,根本无法破解其中的数据,保证了其中的安全性。它仍然使用的http进行数据的传输,不同的是https传输的数据都是经过tcp和http之间的ssl层进行加密的。
在HTTP的基础上通过传输加密和身份认证保证了传输过程的安全性,所谓的 HTTPS,就是HTTP + SSL/TLS。HTTPS 在HTTP 的基础下加入SSL,HTTPS 的安全基础是 SSL,因此加密的详细内容就需要 SSL。HTTPS 存在不同于 HTTP 的默认端口及一个加密/身份验证层(在 HTTP与 TCP之间)。这个系统提供了身份验证与加密通讯方法。
3、SSL协议
Secure Sockets Layer 安全套接字协议,及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议。TLS与SSL在传输层与应用层之间对网络连接进行加密。
4、对称加密
采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
需要对加密和解密使用相同密钥的加密算法。由于其速度快,对称性加密通常在消息发送方需要加密大量数据时使用。对称性加密也称为密钥加密。
所谓对称,就是采用这种加密方法的双方使用方式用同样的密钥进行加密和解密。密钥是控制加密及解密过程的指令。算法是一组规则,规定如何进行加密和解密。
因此加密的安全性不仅取决于加密算法本身,密钥管理的安全性更是重要。因为加密和解密都使用同一个密钥,如何把密钥安全地传递到解密者手上就成了必须要解决的问题,因为任何人只要持有密钥就能解密了。
5、非对称加密
非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将公钥公开,需要向甲方发送信息的其他角色(乙方)使用该密钥(甲方的公钥)对机密信息进行加密后再发送给甲方;
甲方再用自己私钥对加密后的信息进行解密。甲方想要回复乙方时正好相反,使用乙方的公钥对数据进行加密,同理,乙方使用自己的私钥来进行解密。
另一方面,甲方可以使用自己的私钥对机密信息进行签名后再发送给乙方;乙方再用甲方的公钥对甲方发送回来的数据进行验签。
甲方只能用其私钥解密由其公钥加密后的任何信息。非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要。
私有密钥不能让其他任何人知道,而公开密钥则可以随意发布,任何人都可以获得。使用公开密钥加密方式,发送密文的一方使用对方的公开密钥进行加密处理,对方收到被加密的信息后,再使用自己的私有密钥进行解密。
利用这种方式,不需要发送用来解密的私有密钥,也不必担心密钥被攻击者窃听而盗走。
这种方式有以下缺点:
1)公钥是公开的,所以针对私钥加密的信息,黑客截获后可以使用公钥进行解密,获取其中的内容。
2)公钥并不包含服务器的信息,使用非对称加密算法无法确保服务器身份的合法性,存在中间人攻击的风险,服务器发送给客户端的公钥可能在传送过程中被中间人截获并篡改;
3)非对称加密的加解密效率是非常低的,而 http 的应用场景中通常端与端之间存在大量的交互,非对称加密的效率是无法接受的。
在 HTTPS 的场景中只有服务端保存了私钥,一对公私钥只能实现单向的加解密,所以 HTTPS 中内容传输加密采取的是对称加密,而不是非对称加密。
6、HTTPS请求流程:
HTTPS就把对称加密和非对称加密结合起来,在证书验证阶段使用非对称加密,在数据传输阶段使用对称加密。
1)客户端发起https请求,将它所支持的算法列表和一个用作产生密钥的随机数发送给服务器。
2)服务器从算法列表中选择一种加密算法,并将它和一份包含服务器公用密钥的SSL证书发送给客户端;该证书还包含了用于认证目的的服务器标识,如:证书的发布机构CA、证书的有效期、证书所有者、签名等,服务器同时还提供了一个用作产生密钥的随机数。
3)客户端对服务器的证书进行验证:
a. 首先浏览器读取证书中的证书所有者、有效期等信息进行逐个校验;
b. 浏览器开始查找操作系统中已内置的受信任的证书发布机构CA,与服务器发来的证书中的颁发者CA比对,用于校验证书是否为合法机构颁发;
c. 如果找到,那么浏览器就会从操作系统中取出颁发者CA 的公钥,然后对服务器发来的证书里面的签名进行解密;如果找不到,浏览器就会显示警告信息,说明服务器发来的证书是不可信任的,让用户选择;
4)抽取服务器的公用密钥,然后再产生一个随机密码串,并使用服务器的公用密钥对其进行加密(非对称加 / 解密),并将加密后的信息发送给服务器。
5)服务器用私钥对随机密码串进行解密,并且结合随机数值构造对称加密算法。
6)客户端通过对称加密密钥对请求内容进行加密发送给服务器。
7)服务器通过对称密钥对客户端发送的内容进行解密,然后将响应内容通过对称密钥返回给客户端。
7、HTTPS 的工作原理:
我们都知道 HTTPS 能够加密信息,以免敏感信息被第三方获取,所以很多银行网站或电子邮箱等等安全级别较高的服务都会采用 HTTPS 协议。
1)客户端发起 HTTPS 请求:
用户在浏览器里输入一个 https 网址,然后连接到 server 的 443 端口。
2)服务端的配置:
采用 HTTPS 协议的服务器必须要有一套数字证书,可以自己制作,也可以向组织申请,区别就是自己颁发的证书需要客户端验证通过,才可以继续访问,而使用受信任的公司申请的证书则不会弹出提示页面。这套证书其实就是一对公钥和私钥,如果对公钥和私钥不太理解,可以想象成一把钥匙和一个锁头,只是全世界只有你一个人有这把钥匙,你可以把锁头给别人,别人可以用这个锁把重要的东西锁起来,然后发给你,因为只有你一个人有这把钥匙,所以只有你才能看到被这把锁锁起来的东西。
3)传送证书:
这个证书其实就是公钥,只是包含了很多信息,如证书的颁发机构,过期时间等等。
4)客户端解析证书:
这部分工作是有客户端的TLS来完成的,首先会验证公钥是否有效,比如颁发机构,过期时间等等,如果发现异常,则会弹出一个警告框,提示证书存在问题。如果证书没有问题,那么就生成一个随机值,然后用证书对该随机值进行加密,就好像上面说的,把随机值用锁头锁起来,这样除非有钥匙,不然看不到被锁住的内容。
5)传送加密信息:
这部分传送的是用证书加密后的随机值,目的就是让服务端得到这个随机值,以后客户端和服务端的通信就可以通过这个随机值来进行加密解密了。
6)服务端解密信息:
服务端用私钥解密后,得到了客户端传过来的随机值(私钥),然后把内容通过该值进行对称加密,所谓对称加密就是,将信息和私钥通过某种算法混合在一起,这样除非知道私钥,不然无法获取内容,而正好客户端和服务端都知道这个私钥,所以只要加密算法够彪悍,私钥够复杂,数据就够安全。
7)传输加密后的信息:
这部分信息是服务段用私钥加密后的信息,可以在客户端被还原。
8)客户端解密信息:
客户端用之前生成的私钥解密服务段传过来的信息,于是获取了解密后的内容,整个过程第三方即使监听到了数据,也束手无策。
8、Http与Https差异比较
1)https协议需要到ca申请证书,一般免费证书很少,需要交费。
2)http是超文本传输协议,信息是明文传输,https 则是具有安全性的ssl加密传输协议。
3)http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。
4)http的连接很简单,是无状态的;HTTPS协议是由SSL+HTTP协议构建的可进行加密传输、身份认证的网络协议,比http协议安全。
5)HTTPS基于传输层,HTTP基于应用层。
相关文章:

Android 网络协议与网络编程
一、TCP/IP协议 Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联 协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP 协议组成。协议采用了4层的层级结构。…...

【讯飞星火认知大模型】大模型之星火手机助理
目录 1. 讯飞星火认知大模型介绍 2. API 申请 3. 星火手机助理 4. 效果展示 1. 讯飞星火认知大模型介绍 讯飞星火认知大模型是科大讯飞自研的基于深度学习的自然语言处理模型,它可以理解和生成中文,执行多种任务,如问答、翻译、写作、编…...
centos中的swap.img可以删除吗
swap.img 是 CentOS 系统中的交换分区文件,用于辅助内存管理。交换分区在系统内存不足时用于存储不常用的数据,而不是直接写入硬盘。一般情况下,不建议删除交换分区文件,因为它对系统的正常运行非常重要。 如果您真的希望删除交换…...

Java多线程编程中的线程死锁
Java多线程编程中的线程死锁 在多线程编程中,线程死锁是一种常见的问题,它发生在两个或多个线程互相等待对方释放资源的情况下,导致程序无法继续执行。本文将介绍线程死锁的概念、产生原因、示例以及如何预防和解决线程死锁问题。 线程死…...

在浏览器中使用javascript打印HTML中指定Div带背景图片内容生成PDF电子证书查询的解决方案
在浏览器中使用javascript打印HTML中指定Div带背景图片内容生成PDF电子证书查询的解决方案 一、指定内容打印二、背景图片打印1.CSS背景图片设置2.div相对定位居中 三、完整案例展示1.CSS样式表2.HTML容器构建 一、指定内容打印 要调用浏览器中的打印功能,并指定需…...

【Redis实践篇】使用Redisson 优雅实现项目实践过程中的5种场景
文章目录 1.前言2.使用方式1. 添加Redisson依赖:2. 配置Redis连接信息3. 使用场景3.1. 分布式锁3.2. 限流器(Rate Limiter)3.3. 可过期的对象(Expirable Object)3.4. 信号量(Semaphore)3.5. 分布…...

污水处理厂人员定位方案介绍
污水处理厂人员定位在现代化的污水处理厂中具有重要的意义,它可以带来多方面的优势和好处: 安全管理: 污水处理厂通常涉及到各种危险环境和设备,如化学品、高压设备等。人员定位系统可以追踪人员的位置,确保他们不会进…...
约数个数(质因子分解)
思路: (1)由数论基本定理,任何一个正整数x都能写作,其中p1,p2..pk为x的质因子。 (2)由此可以推断,要求一个数约数的个数,注意到约数就是p1,p2...pk的一种组合ÿ…...

【QT】 QSS样式表设计一文了解
很高兴在雪易的CSDN遇见你 ,给你糖糖 欢迎大家加入雪易社区-CSDN社区云 前言 本文分享QT界面设计中的QSS样式技术,主要从**、**和**方面展开,希望对各位小伙伴有所帮助!学会了QSS样式设计,就可以开动你的审美&#…...

9-AJAX-1入门
AJAX 目录 AJAX 概念和 axios 使用认识 URLURL 查询参数常用请求方法和数据提交HTTP协议-报文接口文档案例 - 用户登录form-serialize 插件 01.AJAX 概念和 axios 使用 目标 了解 AJAX 概念并掌握 axios 库基本使用 讲解 什么是 AJAX ? mdn 使用浏览器的 XMLHttpRequest…...
ssh免密登录
客户端 第一步:生成密钥 ssh-keygen -t rsa 第二步:从“~/.ssh/id_rsa.pub”拷贝公钥 服务器端 填写公钥 打开authorized_keys,并把刚刚的公钥填进去 重启服务 sudo systemctl restart sshd...

全球公链周进展-2023/8/14
Tokenview每周周一准时更新全球公链最新进展,致力于为全球公链爱好者整合最新项目进展。 过去一周,明星项目动态如下: 第 115 次以太坊核心开发者共识会议总结 以太坊客户端 Geth v1.12.1版本发布,聚焦Cancun硬分叉 以太坊Holesk…...
python装饰器详解,python装饰器笔记心得
装饰器 装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题。但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕过去了,然后面试问…...

【C语言】每日一题(寻找数组的中心下标)
寻找数组的中心下标,链接奉上 方法 暴力循环前缀和 暴力循环 思路: 依旧是我们的老朋友,暴力循环。 1.可以利用外层for循环,循环变量为数组下标,在循环内分别求出下标左边与右边的sum 2.在边界时讨论&…...
centos 安装 nginx配置ssl 和 获取用户真实ip
安装所需环境 nginx 是用 C语言开发的,建议在Linux上使用,如果是windows用户,也可以使用windows版本。 一. gcc 安装 安装 nginx 需要先将官网下载的源码进行编译,编译依赖 gcc 环境,如果有 gcc 环境,则不…...

RocketMQ 消息消费 轮询机制 PullRequestHoldService
1. 概述 先来看看 RocketMQ 消费过程中的轮询机制是啥。首先需要补充一点消费相关的前置知识。 1.1 消息消费方式 RocketMQ 支持多种消费方式,包括 Push 模式和 Pull 模式 Pull 模式:用户自己进行消息的拉取和消费进度的更新Push 模式:Broker…...

springboot 数据库版本升级管理常用解决方案
目录 一、前言 1.1 单独执行初始化sql 1.2 程序自动执行 二、数据库版本升级管理问题 三、spring 框架sql自动管理机制 3.1 jdbcTemplate 方式 3.1.1 创建数据库 3.1.2 创建 springboot 工程 3.1.3 初始化sql脚本 3.1.4 核心配置类 3.1.5 执行sql初始化 3.2 配置文…...
78. 子集
题目描述 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入:nums [1,2,3] 输出:[[],[1],[2…...

Mask RCNN网络结构以及整体流程的详细解读
文章目录 1、概述2、Backbone3、RPN网络3.1、anchor的生成3.2、anchor的标注/分配3.3、分类预测和bbox回归3.4、NMS生成最终的anchor 4、ROI Head4.1、ROI Align4.2、cls head和bbox head4.3、mask head 1、概述 Mask RCNN是在Faster RCNN的基础上增加了mask head用于实例分割…...

Android Framework底层原理之WMS的启动流程
一 概述 今天,我们介绍 WindowManagerService(后续简称 WMS)的启动流程,WMS 是 Android 系统中,负责窗口显示的的服务。在 Android 中它也起着承上启下的作用。 如下图,就是《深入理解 Android》书籍中的…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...