当前位置: 首页 > news >正文

百日筑基篇——Pandas学习三(pyhton入门八)

百日筑基篇——Pandas学习三(pyhton入门八)

文章目录

  • 前言
  • 一、数据排序
  • 二、字符串处理
  • 三、数据合并方法
    • 1. merge方法
    • 2. concat方法
  • 四、分组数据统计
  • 五、数据重塑
    • 1. stack
    • 2. pivot
  • 总结


前言

上一篇文章介绍了一下pandas库中的一些函数,而本章则继续介绍库中的函数在数据处理中的应用。

一、数据排序

运用sort_values方法,

import pandas as pdpath = r"C:\Users\王浩天\Desktop\beijing_tianqi_2018.csv"
df = pd.read_csv(path)
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃", "").astype("int32")
df.loc[:, "yWendu"] = df["yWendu"].str.replace("℃", "").astype("int32")print(df.head(4))
#Series的排序
print(df["bWendu"].sort_values(ascending=True,inplace=False))
#DataFrame的排序
df1 = df.sort_values(by=["aqiLevel","bWendu"],ascending=[True,False],inplace=False)
print(df1.head(6))ymd  bWendu  yWendu  tianqi fengxiang fengli  aqi aqiInfo  aqiLevel
178  2018-06-28      35      24    多云~晴        北风   1-2331
149  2018-05-30      33      18       晴        西风   1-2461
206  2018-07-26      33      25  多云~雷阵雨       东北风   1-2401
158  2018-06-08      32      19  多云~雷阵雨       西南风   1-2431
205  2018-07-25      32      25      多云        北风   1-2281
226  2018-08-15      32      24      多云       东北风   3-4331

在数据框的排序中,sort_values()函数的参数"by"用来指定根据排序的列名,“ascending” 参数则填布尔值或由布尔值形成的列表,用来指定是升序还是降序 ,且与"by"一一对应。

列如,在上述代码中,是先根据"aqiLevel"升序排序,再在此基础上按"bWendu"来降序排序。

二、字符串处理

使用 .str方法,获取Series的str属性,以便在属性上调用所需函数。


#使用str的startswith 、contains 等得到bool的Series,可以用来做条件查询
#例如,提取出六月份的数据
condition = df["ymd"].str.startswith("2018-06")
print(df.loc[condition,:])#多次str处理,只展示月份
df1["ymd"]=df1["ymd"].str.replace("-","").str[4:6]
print(df1.head(3))ymd  bWendu  yWendu  tianqi fengxiang fengli  aqi aqiInfo  aqiLevel
178  06      35      24    多云~晴        北风   1-2331
149  05      33      18       晴        西风   1-2461
206  07      33      25  多云~雷阵雨       东北风   1-2401#使用split对ymd进行拆分为列表
def func(df):year,month,day = df["ymd"].split("-")return f"{year}{month}{day}日"
df["日期"] = df.apply(func,axis=1)
print(df.head(3))ymd  bWendu  yWendu tianqi  ... aqi aqiInfo  aqiLevel           日期
0  2018-01-01       3      -6~多云  ...  592  201801011  2018-01-02       2      -5~多云  ...  491  201801022  2018-01-03       2      -5     多云  ...  281  20180103#若要将年月日去掉,可使用正则表达式
df["日期"]=df["日期"].str.replace("[年月日]","",regex = True)
print(df.head(2))

三、数据合并方法

1. merge方法

根据一列或多列的值将两个DataFrame对象按行或列合并到一起


import pandas as pddf1 = pd.DataFrame({'学号': ['A0', 'A1', 'A2', 'A3'],'姓名': ['B0', 'B1', 'B2', 'B3'],'学生': ['K0', 'K1', 'K2', 'K3']})df2 = pd.DataFrame({'成绩': ['C0', 'C1', 'C2', 'C3'],'导师': ['D0', 'D1', 'D2', 'D3'],'学生': ['K0', 'K1', 'K2', 'K3']})print(df1)
print(df2)
df_merge = pd.merge(df1,df2,on="学生")
print(df_merge)学号  姓名  学生  成绩  导师
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K2  C2  D2
3  A3  B3  K3  C3  D3

笔记如下:
在这里插入图片描述

2. concat方法

用于按行或列将多个DataFrame对象连接到一起。它可以用于沿着行或列轴将DataFrame对象堆叠在一起

import pandas as pddf1 = pd.read_csv(r"D:\python\PycharmProjects\pythonProject1\pachou\result_dir\yaxibao0.csv",encoding="utf-8")
df2 = pd.read_csv(r"D:\python\PycharmProjects\pythonProject1\pachou\result_dir\yaxibao1.csv",encoding="utf-8")
df1 = pd.DataFrame(df1)
df2 = pd.DataFrame(df2)
#print(df1)
#print(df2)
DF= pd.concat([df1,df2],axis=0)  #默认按行合并
print(DF)AA_ID  yaxibao
0    LaggChr1G00000010.1     chlo
1    LaggChr1G00000020.1     cyto
2    LaggChr1G00000030.1     nucl
3    LaggChr1G00000040.1     nucl
4    LaggChr1G00000050.1     mito
..                   ...      ...
533  LaggChr1G00010360.1     nucl
534  LaggChr1G00010370.1     cyto
535  LaggChr1G00010380.1     cyto
536  LaggChr1G00010390.1     chlo
537  LaggChr1G00010400.1     plas[1040 rows x 2 columns]

笔记如下:

在这里插入图片描述

四、分组数据统计

主要运用groupby方法,通常与agg()方法联用。也可以自定义方法,并使用apply应用于数据框

import numpy as np
df["ymd"] = df["ymd"].str[:7]
print(df.head(3)ymd  bWendu  yWendu tianqi fengxiang fengli  aqi aqiInfo  aqiLevel
0  2018-01       3      -6~多云       东北风   1-2592
1  2018-01       2      -5~多云       东北风   1-2491
2  2018-01       2      -5     多云        北风   1-2281#可传入多个分组依据列;as_index=False ,表示不使分组列变为索引,后面的agg函数,传入字典可对不同的列使用指定的聚合方法
print(df.groupby(["fengxiang","ymd"],as_index=False).agg({"bWendu":np.max,"yWendu": np.min,"aqi": np.mean}))fengxiang      ymd  bWendu  yWendu         aqi
0        东北风  2018-01       3     -11   45.200000
1        东北风  2018-02      10      -4   45.000000
2        东北风  2018-03      15      -4  141.666667
3        东北风  2018-04      19       1   56.200000
4        东北风  2018-05      25      13  121.000000
..       ...      ...     ...     ...         ...
68       西南风  2018-12       2      -8   78.000000
69        西风  2018-02       8      -4   78.000000
70        西风  2018-05      33      10   74.500000
71        西风  2018-07      27      23   28.000000
72        西风  2018-10      21       7   77.000000df4 = df[["ymd","bWendu","yWendu","aqi","aqiLevel"]]
print(df4.groupby("ymd").agg([np.sum,np.mean,np.std]))
print(df4.groupby("ymd").agg({"bWendu":np.max,"yWendu": np.min,"aqi": np.mean}))#使用自定义方法
def guiyihua(df):df["bWendu_new"] = df["bWendu"].apply(lambda x: (x - df["bWendu"].min())/ (df["bWendu"].max() - df["bWendu"].min()))return df
print(df.groupby("ymd").apply(guiyihua))

五、数据重塑

这里是引用

1. stack

stack函数用于将数据框的列转换为行,从而生成一个新的数据框
它会将数据框的列标签转换为新的索引层级,并将对应的值放入新的列中。这个过程被称为"堆叠"
unstack是与stack相反的操作,用于将行索引转换为列。

#print(df.dtypes)
df["ymd"] = pd.to_datetime(df["ymd"])
#print(df.dtypes)
#根据月份分组
df_group = df.groupby([df["ymd"].dt.month,"fengxiang"])["bWendu"].agg(pv = np.max)
print(df_group)pv
ymd fengxiang    
1   东北风         3东南风         2东风          3北风          2南风          7
...            ..
11  西南风        14
12  东北风         9东南风         7西北风        10西南风         2[73 rows x 1 columns]#将行索引转化为列
df_stack = df_group.unstack()
print(df_stack)pv                                          
fengxiang   东北风   东南风    东风    北风    南风   西北风   西南风    西风
ymd                                                      
1           3.0   2.0   3.0   2.0   7.0   6.0   5.0   NaN
2          10.0   NaN   7.0   6.0   8.0   5.0  12.0   8.0
3          15.0  14.0  25.0  18.0  27.0   NaN  25.0   NaN
4          19.0  26.0   NaN  26.0  30.0  26.0  27.0   NaN
5          25.0  28.0  29.0  25.0  35.0  31.0  32.0  33.0
6          37.0  37.0  36.0  35.0  37.0   NaN  38.0   NaN
7          33.0  37.0  32.0  32.0  35.0   NaN  35.0  27.0
8          32.0  35.0  35.0  32.0  36.0   NaN  28.0   NaN
9           NaN   NaN   NaN  30.0  29.0  27.0  31.0   NaN
10         17.0   NaN   NaN  25.0  25.0  24.0  19.0  21.0
11          8.0  13.0   NaN  15.0  18.0  11.0  14.0   NaN
12          9.0   7.0   NaN   NaN   NaN  10.0   2.0   NaN#将列索引转换为行
ymd  fengxiang    
1    东北风        pv     3东南风        pv     2东风         pv     3北风         pv     2南风         pv     7..
11   西南风        pv    14
12   东北风        pv     9东南风        pv     7西北风        pv    10西南风        pv     2
Length: 73, dtype: int32

2. pivot

pivot函数会重新安排数据框的行和列,使之对应于新的行和列标签。这个过程被称为"旋转"


import pandas as pd# 创建一个简单的数据框
data = {'Name': ['wht', 'xingshi'],'Subject': 'Maths','Score': [90, 85]}
df = pd.DataFrame(data)
print(df)Name Subject  Score
0      wht   Maths     90
1  xingshi   Maths     85# 使用pivot函数进行数据重塑
pivoted_df = df.pivot(index='Name', columns='Subject', values='Score')# 打印重塑后的数据框
print(pivoted_df)
Subject  Maths
Name          
wht         90
xingshi     85

总结

本章主要总结了有关pandas库中的一些函数,有排序函数sort_values; 数据合并函数merge、concat;分组统计函数groupby;以及数据重塑函数stack、pivot。

子非鱼,安知鱼之乐;

–2023-8-14 筑基篇

相关文章:

百日筑基篇——Pandas学习三(pyhton入门八)

百日筑基篇——Pandas学习三(pyhton入门八) 文章目录 前言一、数据排序二、字符串处理三、数据合并方法1. merge方法2. concat方法 四、分组数据统计五、数据重塑1. stack2. pivot 总结 前言 上一篇文章介绍了一下pandas库中的一些函数,而本…...

【Android Framework系列】第10章 PMS之Hook实现广播的调用

1 前言 前面章节我们学习了【Android Framework系列】第4章 PMS原理我们了解了PMS原理,【Android Framework系列】第9章 AMS之Hook实现登录页跳转我们知道AMS可以Hook拦截下来实现未注册Activity页面的跳转,本章节我们来尝试一下HookPMS实现广播的发送。…...

Mysql锁实战

mysql版本:8.0.32 通过实战验证mysql的Record lock 与 Gap lock原理 准备工作 设置隔离级别为:RR,以及innodb状态输出锁相关信息 show variables like %innodb_status_output_locks%; show variables like %isolation%;set global innodb_…...

HCIP-OpenStack发放云主机

1、云中的概念 在云平台注册了一个账号,这个账号对于云平台来说,就是一个租户或者一个项目。 租户/项目(tenant/project),租户就是项目的意思。主机聚合就是主机组的意思。 region(区域)&…...

时序预测 | MATLAB基于扩散因子搜索的GRNN广义回归神经网络时间序列预测(多指标,多图)

时序预测 | MATLAB基于扩散因子搜索的GRNN广义回归神经网络时间序列预测(多指标,多图) 目录 时序预测 | MATLAB基于扩散因子搜索的GRNN广义回归神经网络时间序列预测(多指标,多图)效果一览基本介绍程序设计学习小结参考资料效果一览...

Vulhub之Apache HTTPD 换行解析漏洞(CVE-2017-15715)

Apache HTTPD是一款HTTP服务器,它可以通过mod_php来运行PHP网页。其2.4.0~2.4.29版本中存在一个解析漏洞,在解析PHP时,1.php\x0A将被按照PHP后缀进行解析,导致绕过一些服务器的安全策略。 1、docker-compose build、docker-compo…...

ARTS 挑战打卡的第7天 --- Ubuntu中的WindTerm如何设置成中文,并且关闭shell中Tab键声音(Tips)

前言 (1)Windterm是一个非常优秀的终端神器。关于他的下载我就不多说了,网上很多。今天我就分享一个国内目前没有找到的这方面的资料——Ubuntu中的WindTerm如何设置成中文,并且关闭shell中Tab键声音。 将WindTerm设置成中文 &…...

Oracle之执行计划

1、查看执行计划 EXPLAIN PLAN FOR SELECT * FROM temp_1 a ; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY); 2、执行计划说明 2.1、执行顺序 根据缩进来判断,缩进最多的最先执行;(缩进相同时,最上面的最先执行) 2.2…...

【Vue框架】菜单栏权限的使用与显示

前言 在 【Vue框架】Vue路由配置 中的getters.js里,可以看到有一个应用程序的状态(变量)叫 permission_routes,这个就是管理前端菜单栏的状态。具体代码的介绍,都以注释的形式来说明。 1、modules\permission.js 1…...

案例研究|大福中国通过JumpServer满足等保合规和资产管理双重需求

“大福中国为了满足安全合规要求引入堡垒机产品,在对比了传统型堡垒机后,发现JumpServer使用部署更加灵活,功能特性丰富,能够较好地满足公司在等保合规和资产管理方面的双重需求。” ——大福(中国)有限公…...

大数据课程I4——Kafka的零拷贝技术

文章作者邮箱:yugongshiyesina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握Kafka的零拷贝技术; ⚪ 了解常规的文件传输过程; 一、常规的网络传输原理 表面上一个很简单的网络文件输出的过程,在OS底层&…...

红日ATT&CK VulnStack靶场(三)

网络拓扑 web阶段 1.扫描DMZ机器端口 2.进行ssh和3306爆破无果后访问web服务 3.已知目标是Joomla,扫描目录 4.有用的目录分别为1.php 5.configuration.php~中泄露了数据库密码 6.administrator为后台登录地址 7.直接连接mysql 8.找到管理员表,密码加密了…...

JavaScript之BOM+window对象+定时器+location,navigator,history对象

一.BOM概述 BOM即浏览器对象模型,它提供了独立于内容而与窗口进行交互的对象 BOM的顶级对象是window 二.window对象的常见事件 1.窗口加载事件window.onload window.onload function(){} 或者 window.addEventListener("onload" , function(){}); window.onlo…...

为MySQL新增一张performance_schema表 | StoneDB 技术分享会 #4

StoneDB开源地址 https://github.com/stoneatom/stonedb 设计:小艾 审核:丁奇、李浩 编辑:宇亭 作者:王若添 中国科学技术大学-软件工程-在读硕士、StoneDB 内核研发实习生 performance_schema 简介 MySQL 启动后会自动创建四…...

2023/8/12总结

增加了管理员功能点:(管理标签和分类) 另外加了一个转换成pdf的功能 主要是通过wkhtmltopdf实现的,之前看过很多说用adobe的还有其他但是都没成功。 然后就是在学习websocket和协同过滤算法实现,还只是初步了解了这些。…...

win10电脑npm run dev报错解决

npm run dev报错解决 出现错误前的操作步骤错误日志解决步骤 出现错误前的操作步骤 初始化Vue项目 $ npm create vue3.6.1创建项目文件夹client Vue.js - The Progressive JavaScript Framework✔ Project name: › client ✔ Add TypeScript? › No ✔ Add JSX Support? …...

如何使用PHP编写爬虫程序

在互联网时代,信息就像一条无休无止的河流,源源不断地涌出来。有时候我们需要从Web上抓取一些数据,以便分析或者做其他用途。这时候,爬虫程序就显得尤为重要。爬虫程序,顾名思义,就是用来自动化地获取Web页…...

分布式 - 服务器Nginx:一小时入门系列之HTTP反向代理

文章目录 1. 正向代理和反向代理2. 配置代理服务3. proxy_pass 命令解析4. 设置代理请求headers 1. 正向代理和反向代理 正向代理是客户端通过代理服务器访问互联网资源的方式。在这种情况下,客户端向代理服务器发送请求,代理服务器再向互联网上的服务器…...

Android Fragment (详细版)

经典好文推荐,通过阅读本文,您将收获以下知识点: 一、Fragment 简介 二、Fragment的设计原理 三、Fragment 生命周期 四、Fragment 在Activity中的使用方法 五、动态添加Fragment到Activity的方法 六、Activity 中获取Fragment 七、Fragment 获取宿主Activity的方法 八、两个…...

如何使用Flask-RESTPlus构建强大的API

如何使用Flask-RESTPlus构建强大的API 引言: 在Web开发中,构建API(应用程序接口)是非常常见和重要的。API是一种允许不同应用程序之间交互的方式,它定义了如何请求和响应数据的规范。Flask-RESTPlus是一个基于Flask的…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

云原生安全实战:API网关Kong的鉴权与限流详解

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...