当前位置: 首页 > news >正文

自然语言处理从入门到应用——LangChain:记忆(Memory)-[自定义对话记忆与自定义记忆类]

分类目录:《自然语言处理从入门到应用》总目录


自定义对话记忆

本节介绍了几种自定义对话记忆的方法:

from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemoryllm = OpenAI(temperature=0)
AI前缀

第一种方法是通过更改对话摘要中的AI前缀来实现。默认情况下,它设置为AI,但你可以将其设置为任何你想要的内容。需要注意的是,如果我们更改了这个前缀,我们还应该相应地更改链条中使用的提示来反映这个命名更改。让我们通过下面的示例来演示这个过程。

# Here it is by default set to "AI"
conversation = ConversationChain(llm=llm, verbose=True, memory=ConversationBufferMemory()
)
conversation.predict(input="Hi there!")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi there!
AI:> Finished ConversationChain chain.

输出:

" Hi there! It's nice to meet you. How can I help you today?"

输入:

conversation.predict(input="What's the weather?")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi there!
AI:  Hi there! It's nice to meet you. How can I help you today?
Human: What's the weather?
AI:> Finished ConversationChain chain.

输出:

' The current weather is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the next few days is sunny with temperatures in the mid-70s.'

输入:

# Now we can override it and set it to "AI Assistant"
from langchain.prompts.prompt import PromptTemplatetemplate = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
{history}
Human: {input}
AI Assistant:"""
PROMPT = PromptTemplate(input_variables=["history", "input"], template=template
)
conversation = ConversationChain(prompt=PROMPT,llm=llm, verbose=True, memory=ConversationBufferMemory(ai_prefix="AI Assistant")
)
conversation.predict(input="Hi there!")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi there!
AI Assistant:> Finished ConversationChain chain.
" Hi there! It's nice to meet you. How can I help you today?"
conversation.predict(input="What's the weather?")
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi there!
AI Assistant:  Hi there! It's nice to meet you. How can I help you today?
Human: What's the weather?
AI Assistant:> Finished ConversationChain chain.

输出:

The current weather is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the rest of the day is sunny with a high of 78 degrees and a low of 65 degrees.'
人类前缀

第二种方法是通过更改对话摘要中的人类前缀来实现。默认情况下,它设置为Human,但我们可以将其设置为任何我们想要的内容。需要注意的是,如果我们更改了这个前缀,我们还应该相应地更改链条中使用的提示来反映这个命名更改。让我们通过下面的示例来演示这个过程。

# Now we can override it and set it to "Friend"
from langchain.prompts.prompt import PromptTemplatetemplate = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
{history}
Friend: {input}
AI:"""
PROMPT = PromptTemplate(input_variables=["history", "input"], template=template
)
conversation = ConversationChain(prompt=PROMPT,llm=llm, verbose=True, memory=ConversationBufferMemory(human_prefix="Friend")
)
conversation.predict(input="Hi there!")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Friend: Hi there!
AI:> Finished ConversationChain chain.
" Hi there! It's nice to meet you. How can I help you today?"
conversation.predict(input="What's the weather?")
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Friend: Hi there!
AI:  Hi there! It's nice to meet you. How can I help you today?
Friend: What's the weather?
AI:> Finished ConversationChain chain.

输出:

  ' The weather right now is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the rest of the day is mostly sunny with a high of 82 degrees.'

创建自定义记忆类

尽管在LangChain中有几种预定义的记忆类型,但我们很可能希望添加自己的记忆类型,以使其适用于我们的应用程序。在本节中,我们将向ConversationChain添加一个自定义的记忆类型。为了添加自定义的记忆类,我们需要导入基本的记忆类并对其进行子类化。

from langchain import OpenAI, ConversationChain
from langchain.schema import BaseMemory
from pydantic import BaseModel
from typing import List, Dict, Any

在这个示例中,我们将编写一个自定义的记忆类,使用spacy提取实体并将有关它们的信息保存在一个简单的哈希表中。然后,在对话过程中,我们将查看输入文本,提取任何实体,并将关于它们的任何信息放入上下文中。需要注意的是,这种实现相当简单且脆弱,可能在生产环境中不太有用。它的目的是展示我们可以添加自定义的记忆实现。为此,我们需要首先安装spacy

# !pip install spacy
# !python -m spacy download en_core_web_lg
import spacy
nlp = spacy.load('en_core_web_lg')
class SpacyEntityMemory(BaseMemory, BaseModel):"""Memory class for storing information about entities."""# Define dictionary to store information about entities.entities: dict = {}# Define key to pass information about entities into prompt.memory_key: str = "entities"def clear(self):self.entities = {}@propertydef memory_variables(self) -> List[str]:"""Define the variables we are providing to the prompt."""return [self.memory_key]def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:"""Load the memory variables, in this case the entity key."""# Get the input text and run through spacydoc = nlp(inputs[list(inputs.keys())[0]])# Extract known information about entities, if they exist.entities = [self.entities[str(ent)] for ent in doc.ents if str(ent) in self.entities]# Return combined information about entities to put into context.return {self.memory_key: "\n".join(entities)}def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:"""Save context from this conversation to buffer."""# Get the input text and run through spacytext = inputs[list(inputs.keys())[0]]doc = nlp(text)# For each entity that was mentioned, save this information to the dictionary.for ent in doc.ents:ent_str = str(ent)if ent_str in self.entities:self.entities[ent_str] += f"\n{text}"else:self.entities[ent_str] = text

我们现在定义一个提示,其中包含有关实体的信息以及用户的输入:

from langchain.prompts.prompt import PromptTemplatetemplate = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.Relevant entity information:
{entities}Conversation:
Human: {input}
AI:"""
prompt = PromptTemplate(input_variables=["entities", "input"], template=template
)

现在,我们把它们整合起来:

llm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, prompt=prompt, verbose=True, memory=SpacyEntityMemory())

在第一个例子中,由于对Harrison没有先前的了解,"Relevant entity information"部分是空的:

conversation.predict(input="Harrison likes machine learning")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.Relevant entity information:Conversation:
Human: Harrison likes machine learning
AI:> Finished ConversationChain chain.

输出:

" That's great to hear! Machine learning is a fascinating field of study. It involves using algorithms to analyze data and make predictions. Have you ever studied machine learning, Harrison?"

现在在第二个例子中,我们可以看到它提取了关于Harrison的信息。

conversation.predict(input="What do you think Harrison's favorite subject in college was?")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.Relevant entity information:
Harrison likes machine learningConversation:
Human: What do you think Harrison's favorite subject in college was?
AI:> Finished ConversationChain chain.

输出:

' From what I know about Harrison, I believe his favorite subject in college was machine learning. He has expressed a strong interest in the subject and has mentioned it often.'

这个实现方式相对简单且容易出错,可能在实际生产环境中没有太大的用途,但它展示了我们可以添加自定义的内存实现方式。

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关文章:

自然语言处理从入门到应用——LangChain:记忆(Memory)-[自定义对话记忆与自定义记忆类]

分类目录:《自然语言处理从入门到应用》总目录 自定义对话记忆 本节介绍了几种自定义对话记忆的方法: from langchain.llms import OpenAI from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemoryllm…...

【C/C++】STL queue 非线程安全接口,危险!

STL 中的 queue 是非线程安全的,一个组合操作:front(); pop() 先读取队首元素然后删除队首元素,若是有多个线程执行这个组合操作的话,可能会发生执行序列交替执行,导致一些意想不到的行为。因此需要重新设计线程安全的…...

执行Lua脚本后一直查询不到Redis中的数据(附带问题详细排查过程,一波三折)

文章目录 执行Lua脚本后一直查询不到Redis中的数据(附带详细问题排查过程,一波三折)问题背景问题1:Lua脚本无法切库问题2:RedisTemlate切库报错问题3:序列化导致数据不一致问题4:Lua脚本中单引号…...

[高光谱]PyTorch使用CNN对高光谱图像进行分类

项目原地址: Hyperspectral-Classificationhttps://github.com/eecn/Hyperspectral-ClassificationDataLoader讲解: [高光谱]使用PyTorch的dataloader加载高光谱数据https://blog.csdn.net/weixin_37878740/article/details/130929358 一、模型加载 在…...

jmeter获取mysql数据

JDBC Connection Configuration Database URL: jdbc:mysql:// 数据库地址 /库名 JDBC Driver class:com.mysql.jdbc.Driver Username:账号 Password:密码 JDBC Request 字段含义 字段含义 Variable Name Bound to Pool 数据库连接池配置…...

Dedecms V110最新版RCE---Tricks

前言 刚发现Dedecms更新了发布版本,顺便测试一下之前的day有没有修复,突然想到了新的tricks去实现RCE。 文章发布的时候估计比较晚了,一直没时间写了。 利用 /uploads/dede/article_string_mix.php /uploads/dede/article_template_rand.…...

CTFshow 限时活动 红包挑战7、红包挑战8

CTFshow红包挑战7 写不出来一点&#xff0c;还是等了官方wp之后才复现。 直接给了源码 <?php highlight_file(__FILE__); error_reporting(2);extract($_GET); ini_set($name,$value);system("ls ".filter($_GET[1])."" );function filter($cmd){$cmd…...

Redis使用Lua脚本和Redisson来保证库存扣减中的原子性和一致性

文章目录 前言1.使用SpringBoot Redis 原生实现方式2.使用redisson方式实现3. 使用RedisLua脚本实现3.1 lua脚本代码逻辑 3.2 与SpringBoot集成 4. Lua脚本方式和Redisson的方式对比5. 源码地址6. Redis从入门到精通系列文章7. 参考文档 前言 背景&#xff1a;最近有社群技术交…...

【从零开始学Kaggle竞赛】泰坦尼克之灾

目录 0.准备1.问题分析挑战流程数据集介绍结果提交 2.代码实现2.1 加载数据2.1.1 加载训练数据2.1.2 加载测试数据 2.2 数据分析2.3 模型建立与预测 3.结果提交 0.准备 注册kaggle账号后&#xff0c;进入titanic竞赛界面 https://www.kaggle.com/competitions/titanic 进入后界…...

输出无重复的3位数和计算无人机飞行坐标

编程题总结 题目一&#xff1a;输出无重复的3位数 题目描述 从{1,2,3,4,5,6,7,8,9}中随机挑选不重复的5个数字作为输入数组‘selectedDigits’&#xff0c;能组成多少个互不相同且无重复数字的3位数?请编写程》序&#xff0c;从小到大顺序&#xff0c;以数组形式输出这些3位…...

muduo 29 异步日志

目录 Muduo双缓冲异步日志模型: 异步日志实现: 为什么要实现非阻塞的日志...

Qt 对象序列化/反序列化

阅读本文大概需要 3 分钟 背景 日常开发过程中&#xff0c;避免不了对象序列化和反序列化&#xff0c;如果你使用 Qt 进行开发&#xff0c;那么有一种方法实现起来非常简单和容易。 实现 我们知道 Qt 的元对象系统非常强大&#xff0c;基于此属性我们可以实现对象的序列化和…...

从零学算法(非官方题库)

输入两棵二叉树A和B&#xff0c;判断B是不是A的子结构。(约定空树不是任意一个树的子结构) B是A的子结构&#xff0c; 即 A中有出现和B相同的结构和节点值。 例如: 给定的树 A:3/ \4 5/ \1 2给定的树 B&#xff1a;4 / 1返回 true&#xff0c;因为 B 与 A 的一个子树拥有相…...

Java # JVM内存管理

一、运行时数据区域 程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区、运行时常量池、直接内存 二、HotSpot虚拟机对象 对象创建&#xff1a; 引用检查类加载检查分配内存空间&#xff1a;指针碰撞、空闲列表分配空间初始化对象信息设置&#xff08;对象头内&#xff0…...

大疆第二批笔试复盘

大疆笔试复盘(8-14) 笔试时候的状态和下来复盘的感觉完全不一样,笔试时脑子是懵的。 (1)输出无重复三位数 题目描述 从 { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } \left \{ 1,2,3,4,5,6,7,8,9 \right \...

【Linux】磁盘或内存 占用比较高要怎么排

当 Linux 磁盘空间满了时 请注意&#xff0c;在进行任何删除操作之前&#xff0c;请确保你知道哪些文件可以安全删除&#xff0c;并备份重要文件&#xff0c;以免意外丢失数据。当 Linux 磁盘空间满了时&#xff0c;可以按照以下步骤进行排查&#xff1a; 检查磁盘使用情况&…...

解决xss转义导致转码的问题

一、xss简介 人们经常将跨站脚本攻击&#xff08;Cross Site Scripting&#xff09;缩写为CSS&#xff0c;但这会与层叠样式表&#xff08;Cascading Style Sheets&#xff0c;CSS&#xff09;的缩写混淆。因此&#xff0c;有人将跨站脚本攻击缩写为XSS。跨站脚本攻击&#xff…...

numba 入门示例

一维向量求和&#xff1a; C A B 在有nv 近几年gpu的ubuntu 机器上&#xff0c; 环境预备&#xff1a; conda create -name numba_cuda_python3.10 python3.10 conda activate numba_cuda_python3.10conda install numba conda install cudatoolkit conda install -c nvi…...

BUUCTF 还原大师 1

题目描述&#xff1a; 我们得到了一串神秘字符串&#xff1a;TASC?O3RJMV?WDJKX?ZM,问号部分是未知大写字母&#xff0c;为了确定这个神秘字符串&#xff0c;我们通过了其他途径获得了这个字串的32位MD5码。但是我们获得它的32位MD5码也是残缺不全&#xff0c;E903???4D…...

自定义hook之首页数据请求动作封装 hooks

本例子实现了自定义hook之首页数据请求动作封装 hooks&#xff0c;具体代码如下 export type OrganData {dis: Array<{ disease: string; id: number }>;is_delete: number;name: string;organ_id: number;parent_id: number;sort: number; }; export type SwiperData …...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...