CNI 网络分析(九)Calico IPIP
文章目录
- 环境
- 流量分析
- Pod 间
- Node 到 Pod
- Pod 到 service
- Node 到 service
- NetworkPolicy
理清和观测网络流量
环境


可以看到,在宿主机上有到每个 pod IP 的路由指向 veth 设备
到对端节点网段的路由 指向 tunl0 下一跳 ens10 的 ip
有到本节点网段 第一个 ip 即 tunl0 的流量 指向 blackhole,丢弃
流量分析
Pod 间
- 同 node 不同 pod 之间
pod1 <-> pod2
- 在 pod1 eth0 抓包:
00:37:59.442570 32:21:45:c4:c5:d5 > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 98: 10.244.153.204 > 10.244.153.201: ICMP echo request, id 56616, seq 1, length 64
00:37:59.442707 ee:ee:ee:ee:ee:ee > 32:21:45:c4:c5:d5, ethertype IPv4 (0x0800), length 98: 10.244.153.201 > 10.244.153.204: ICMP echo reply, id 56616, seq 1, length 64
pod1 中下一跳都是 169.254.1.1,且目的 mac 是 ee:ee:ee:ee:ee:ee
2. 在 host 端 calice0906292e2 抓包不变
3. 匹配主机路由 10.244.153.201 dev cali118af4ccd16 scope link 和 neighbor 10.244.153.201 dev calibd2348b4f67 lladdr f2:d4:17:63:9d:3d REACHABLE, 在 cali118af4ccd16 抓包
00:41:07.879975 ee:ee:ee:ee:ee:ee > f2:d4:17:63:9d:3d, ethertype IPv4 (0x0800), length 98: 10.244.153.204 > 10.244.153.201: ICMP echo request, id 56616, seq 185, length 64
00:41:07.879998 f2:d4:17:63:9d:3d > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 98: 10.244.153.201 > 10.244.153.204: ICMP echo reply, id 56616, seq 185, length 64
- 在 pod2 内 eth0 抓包:
00:43:59.911019 ee:ee:ee:ee:ee:ee > f2:d4:17:63:9d:3d, ethertype IPv4 (0x0800), length 98: 10.244.153.204 > 10.244.153.201: ICMP echo request, id 56616, seq 353, length 64
00:43:59.911056 f2:d4:17:63:9d:3d > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 98: 10.244.153.201 > 10.244.153.204: ICMP echo reply, id 56616, seq 353, length 64
- 不同 node 上 pod 之间
pod1 访问 pod3
在 veth host 端抓包
20:22:47.858674 32:21:45:c4:c5:d5 > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 98: 10.244.153.204 > 10.244.146.205: ICMP echo request, id 17555, seq 106, length 64
20:22:47.860043 ee:ee:ee:ee:ee:ee > 32:21:45:c4:c5:d5, ethertype IPv4 (0x0800), length 98: 10.244.146.205 > 10.244.153.204: ICMP echo reply, id 17555, seq 106, length 64
看 主机路由 10.244.146.192/26 via 192.168.100.112 dev tunl0 proto bird onlink 下一跳是 tunl0
在 tunl0 上抓包,没有 二层信息。
20:24:42.016898 ip: 10.244.153.204 > 10.244.146.205: ICMP echo request, id 17555, seq 220, length 64
20:24:42.022282 ip: 10.244.146.205 > 10.244.153.204: ICMP echo reply, id 17555, seq 220, length 64
在 业务网卡抓包,可以看到 mac 地址是业务网卡两个端点的 mac。外层 IP 是 业务网卡两个端点的 IP,内层是 icmp 报文。
20:25:41.151109 52:54:00:dc:c7:b4 > 52:54:00:d3:bf:21, ethertype IPv4 (0x0800), length 118: 192.168.100.111 > 192.168.100.112: 10.244.153.204 > 10.244.146.205: ICMP echo request, id 17555, seq 279, length 64
20:25:41.152198 52:54:00:d3:bf:21 > 52:54:00:dc:c7:b4, ethertype IPv4 (0x0800), length 118: 192.168.100.112 > 192.168.100.111: 10.244.146.205 > 10.244.153.204: ICMP echo reply, id 17555, seq 279, length 64
在 对面机器上的报文路径与之对称
Node 到 Pod
- Node 到本 node 上的 pod
在 node111 ping pod1
在 veth host 端抓包,根据路由 10.244.153.204 dev calice0906292e2 scope link,生成报文时拿默认路由网卡的 ip 做源地址
20:15:23.174963 ee:ee:ee:ee:ee:ee > 32:21:45:c4:c5:d5, ethertype IPv4 (0x0800), length 98: 172.18.22.111 > 10.244.153.204: ICMP echo request, id 6, seq 9, length 64
20:15:23.175025 32:21:45:c4:c5:d5 > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 98: 10.244.153.204 > 172.18.22.111: ICMP echo reply, id 6, seq 9, length 64
在 veth 内 eth0 抓包
20:18:23.399015 ee:ee:ee:ee:ee:ee > 32:21:45:c4:c5:d5, ethertype IPv4 (0x0800), length 98: 172.18.22.111 > 10.244.153.204: ICMP echo request, id 6, seq 185, length 64
20:18:23.399049 32:21:45:c4:c5:d5 > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 98: 10.244.153.204 > 172.18.22.111: ICMP echo reply, id 6, seq 185, length 64
- Node 到其他 node 上的 pod
node111 到 pod3
在 node111 tunl0 抓包,根据路由 10.244.146.192/26 via 192.168.100.112 dev tunl0 proto bird onlink,源 IP 为 tunl0 ip
21:10:02.099557 ip: 10.244.153.192 > 10.244.146.205: ICMP echo request, id 11, seq 46, length 64
21:10:02.100595 ip: 10.244.146.205 > 10.244.153.192: ICMP echo reply, id 11, seq 46, length 64
在 ens10 抓包
21:10:18.124555 52:54:00:dc:c7:b4 > 52:54:00:d3:bf:21, ethertype IPv4 (0x0800), length 118: 192.168.100.111 > 192.168.100.112: 10.244.153.192 > 10.244.146.205: ICMP echo request, id 11, seq 62, length 64
21:10:18.129910 52:54:00:d3:bf:21 > 52:54:00:dc:c7:b4, ethertype IPv4 (0x0800), length 118: 192.168.100.112 > 192.168.100.111: 10.244.146.205 > 10.244.153.192: ICMP echo reply, id 11, seq 62, length 64
Pod 到 service
# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-service ClusterIP 10.107.161.255 <none> 8080/TCP 2s
# kubectl get endpoints
NAME ENDPOINTS AGE
nginx-service 10.244.146.205:80,10.244.153.201:80 5s
- Pod 访问 service clusterIP
在 pod1 veth 对抓包,目的地之为 svcIP
21:27:42.690221 32:21:45:c4:c5:d5 > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 74: 10.244.153.204.38610 > 10.107.161.255.8080: Flags [S], seq 4133783852, win 64800, options [mss 1440,sackOK,TS val 3911662959 ecr 0,nop,wscale 7], length 0
21:27:42.690427 ee:ee:ee:ee:ee:ee > 32:21:45:c4:c5:d5, ethertype IPv4 (0x0800), length 74: 10.107.161.255.8080 > 10.244.153.204.38610: Flags [S.], seq 86025828, ack 4133783853, win 64260, options [mss 1440,sackOK,TS val 1534565294 ecr 3911662959,nop,wscale 7], length 0
在 pod2 veth 对抓包,源地址为 主机默认路由网卡 ip,目的地址为 pod2,目的端口为 80
21:27:42.690366 ee:ee:ee:ee:ee:ee > 2a:e7:de:3f:09:fb, ethertype IPv4 (0x0800), length 74: 10.244.153.204.38610 > 10.244.153.201.80: Flags [S], seq 4133783852, win 64800, options [mss 1440,sackOK,TS val 3911662959 ecr 0,nop,wscale 7], length 0
21:27:42.690404 2a:e7:de:3f:09:fb > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 74: 10.244.153.201.80 > 10.244.153.204.38610: Flags [S.], seq 86025828, ack 4133783853, win 64260, options [mss 1440,sackOK,TS val 1534565294 ecr 3911662959,nop,wscale 7], length 0
去 service dnat 成后端 IP 转到 pod2,pod2 回复 pod1,再 snat 成 svcIP。
后端为 跨节点的 pod3 和上面相同
Node 到 service
- Node 访问 service clusterIP
本节点 pod 时
Dnat 成 pod2 ip,根据默认路由网卡 IP,构造报文
22:07:10.054483 ee:ee:ee:ee:ee:ee > 2a:e7:de:3f:09:fb, ethertype IPv4 (0x0800), length 74: 172.18.22.111.13579 > 10.244.153.201.80: Flags [S], seq 948451555, win 65495, options [mss 65495,sackOK,TS val 519032124 ecr 0,nop,wscale 7], length 0
22:07:10.054534 2a:e7:de:3f:09:fb > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 74: 10.244.153.201.80 > 172.18.22.111.13579: Flags [S.], seq 2350447822, ack 948451556, win 64260, options [mss 1440,sackOK,TS val 319012716 ecr 519032124,nop,wscale 7], length 0
跨节点 pod 时
Dnat 成 pod3 ip,根据路由用 node111 ippool 的 网关去请求
22:07:19.881187 ee:ee:ee:ee:ee:ee > 4e:11:e1:74:9d:6c, ethertype IPv4 (0x0800), length 74: 10.244.153.192.14543 > 10.244.146.205.http: Flags [S], seq 1990644142, win 65495, options [mss 65495,sackOK,TS val 519041957 ecr 0,nop,wscale 7], length 0
22:07:19.881227 4e:11:e1:74:9d:6c > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 74: 10.244.146.205.http > 10.244.153.192.14543: Flags [S.], seq 2030705031, ack 1990644143, win 64260, options [mss 1440,sackOK,TS val 1033275778 ecr 519041957,nop,wscale 7], length 0
外部到 svc
default nginx-service NodePort 10.107.161.255 8080:30080/TCP
在主机被访问 IP 网卡抓包
22:13:00.656471 ac:7e:8a:6c:41:c4 > 52:54:00:ba:dc:62, ethertype IPv4 (0x0800), length 149: 172.20.151.77.47334 > 172.18.22.111.30080: Flags [P.], seq 1:84, ack 1, win 229, options [nop,nop,TS val 430411787 ecr 1033616455], length 83
22:13:00.657729 52:54:00:ba:dc:62 > ac:7e:8a:6c:41:c4, ethertype IPv4 (0x0800), length 66: 172.18.22.111.30080 > 172.20.151.77.47334: Flags [.], ack 84, win 502, options [nop,nop,TS val 1033616544 ecr 430411787], length
Chain KUBE-NODE-PORT (1 references)
target prot opt source destination
KUBE-MARK-MASQ tcp -- 0.0.0.0/0 0.0.0.0/0 /* Kubernetes nodeport TCP port for masquerade purpose */ match-set KUBE-NODE-PORT-TCP dst
Masquerade 转为
22:15:32.507099 ee:ee:ee:ee:ee:ee > 2a:e7:de:3f:09:fb, ethertype IPv4 (0x0800), length 74: 172.18.22.111.10229 > 10.244.153.201.80: Flags [S], seq 450784444, win 29200, options [mss 1460,sackOK,TS val 430563700 ecr 0,nop,wscale 7], length 0
22:15:32.507198 2a:e7:de:3f:09:fb > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 74: 10.244.153.201.80 > 172.18.22.111.10229: Flags [S.], seq 3057963543, ack 450784445, win 64260, options [mss 1440,sackOK,TS val 319515169 ecr 430563700,nop,wscale 7], length 0
如果 后端不在本节点
Masquerade 转为
22:31:15.850370 ee:ee:ee:ee:ee:ee > 4e:11:e1:74:9d:6c, ethertype IPv4 (0x0800), length 74: 10.244.153.192.50499 > 10.244.146.205.http: Flags [S], seq 1374007914, win 29200, options [mss 1460,sackOK,TS val 431507052 ecr 0,nop,wscale 7], length 0
22:31:15.850422 4e:11:e1:74:9d:6c > ee:ee:ee:ee:ee:ee, ethertype IPv4 (0x0800), length 74: 10.244.146.205.http > 10.244.153.192.50499: Flags [S.], seq 3861438831, ack 1374007915, win 64260, options [mss 1440,sackOK,TS val 1034711747 ecr 431507052,nop,wscale 7], length 0
NetworkPolicy
为 pod1 打上 role == pod1
为 pod2,pod3 打上 app == nginx
apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:name: allow-tcp-80namespace: default
spec:selector: app == 'nginx'ingress:- action: Allowprotocol: TCPsource:selector: role == 'pod1'destination:ports:- 80
应用后查看 iptables 流程
# iptables -nL
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
cali-OUTPUT all -- 0.0.0.0/0 0.0.0.0/0 /* cali:tVnHkvAo15HuiPy0 */
// 下的是 ingress,则在宿主机上看到的是 Output chain,发给 pod 时的规则Chain cali-OUTPUT (1 references)
target prot opt source destination
cali-forward-endpoint-mark all -- 0.0.0.0/0 0.0.0.0/0 [goto] /* cali:5Z67OUUpTOM7Xa1a */ mark match ! 0x0/0xfff00000Chain cali-forward-endpoint-mark (1 references)
target prot opt source destination
cali-to-wl-dispatch all -- 0.0.0.0/0 0.0.0.0/0 /* cali:aFl0WFKRxDqj8oA6 */Chain cali-to-wl-dispatch (2 references)
target prot opt source destination
cali-tw-calibd2348b4f67 all -- 0.0.0.0/0 0.0.0.0/0 [goto] /* cali:m9Fd7J2kx1zys3Gw */Chain cali-tw-calibd2348b4f67 (1 references)
target prot opt source destination
MARK all -- 0.0.0.0/0 0.0.0.0/0 /* cali:GqobtmvaGkGX_I6Q */ /* Start of policies */ MARK and 0xfffdffff
cali-pi-_w6c3i7lsXCdtfGqcxq5 all -- 0.0.0.0/0 0.0.0.0/0 /* cali:Ew7qVfwras3_yV_L */ mark match 0x0/0x20000Chain cali-pi-_w6c3i7lsXCdtfGqcxq5 (1 references)
target prot opt source destination
MARK tcp -- 0.0.0.0/0 0.0.0.0/0 /* cali:O4FzgAjAMQ8CsxAM */ /* Policy default/default.allow-tcp-80 ingress */ match-set cali40s:SPeglQlTBmfidv00S2cBaDC src multiport dports 80 MARK or 0x10000
// 匹配策略的打 mark 0x10000 accept
相关文章:
CNI 网络分析(九)Calico IPIP
文章目录环境流量分析Pod 间Node 到 PodPod 到 serviceNode 到 serviceNetworkPolicy理清和观测网络流量环境 可以看到,在宿主机上有到每个 pod IP 的路由指向 veth 设备 到对端节点网段的路由 指向 tunl0 下一跳 ens10 的 ip 有到本节点网段 第一个 ip 即 tunl0 的…...
分布式任务调度(XXL-JOB)
什么是分布式任务调度? 任务调度顾名思义,就是对任务的调度,它是指系统为了完成特定业务,基于给定时间点,给定时间间隔或者给定执行次数自动执行任务。通常任务调度的程序是集成在应用中的,比如:…...
Django框架之模型视图--Session
Session 1 启用Session Django项目默认启用Session。 可以在settings.py文件中查看,如图所示 如需禁用session,将上图中的session中间件注释掉即可。 2 存储方式 在settings.py文件中,可以设置session数据的存储方式,可以保存…...
二极管的“几种”应用
不知大家平时有没有留意,二极管的应用范围是非常广的,下面我们来看看我想到几种应用,也可以加深对电路设计的认识: A,特性应用: 由于二极管的种类非常之多,这里这个大类简单罗列下:…...
github上传本地文件详细过程
repository 也就是俗称的仓库 声明:后续操作基于win10系统 前提:有一个github账号、电脑安装了git(官方安装地址) 目的: 把图中pdf文件上传到github上的个人仓库中 效果: 温馨提示: git中复制: ctrl insert…...
常用聚类算法分析
1. 什么是聚类 1.1. 聚类的定义 聚类(Clustering)是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。也即聚类后同一类的数据尽可能聚集到一起…...
OSG三维渲染引擎编程学习之五十八:“第五章:OSG场景渲染” 之 “5.16 简单光源”
目录 第五章 OSG场景渲染 5.16 简单光源 5.16.1 场景中使用光源 5.16.2 简单光源示例 第五章 OSG场景渲染 OSG存在场景树和渲染树,“场景数”的构建在第三章“OSG场景组...
80211无线网络架构
无线网络架构物理组件BSS(Basic Service Set)基本服务集BSSID(BSS Identification)ssid(Service Set Identification)ESS(Extended Service Set)扩展服务集物理组件 无线网络包含四…...
基于springboot+vue的便利店库存管理系统
基于springbootvue的便利店库存管理系统 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景…...
3|物联网控制|计算机控制-刘川来胡乃平版|第1章:绪论|青岛科技大学课堂笔记|U1 ppt
目录绪论(2学时)常用仪表设备(3学时)计算机总线技术(4学时)过程通道与人机接口(6学时)数据处理与控制策略(6学时)网络与通讯技术(3学时࿰…...
js打印本地pdf(使用HttpPrinter打印插件)
js打印本地pdf(使用HttpPrinter打印插件)第一步:启动HttpPrinter打印插件第二步:用浏览器打开示例文件\调用示例\websocket协议示例\html\打印pdf.html输入pdf地址 点击 “下载并打印pdf文件”按钮,就可以静默打印了。…...
华为OD机试 - 双十一(Python) | 机试题算法思路 【2023】
最近更新的博客 【新解法】华为OD机试 - 关联子串 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 停车场最大距离 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 任务调度 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试…...
2020年UML 秋季期末测试题
1.UML的全称是(B )。A.Unified Making LanguageB.Unified Modeling LanguageC.Unified Meodem languageD.Unify Modeling Language2.UML主要应用于( C)。A.基于螺旋模型的结构化开发方法B.基于数据的数据流开发方法C.基于对象的面…...
SpringCloud - Ribbon负载均衡
目录 负载均衡流程 负载均衡策略 Ribbon加载策略 负载均衡流程 Ribbon将http://userservice/user/1请求拦截下来,帮忙找到真实地址http://localhost:8081LoadBalancerInterceptor类对RestTemplate的请求进行拦截,然后从Eureka根据服务id获取服务列表&…...
Spring Boot + Redis 实现分布式锁
一、业务背景有些业务请求,属于耗时操作,需要加锁,防止后续的并发操作,同时对数据库的数据进行操作,需要避免对之前的业务造成影响。二、分析流程使用 Redis 作为分布式锁,将锁的状态放到 Redis 统一维护&a…...
CAD二次开发 插件初始化接口IExtensionApplication
前言:在实际项目开发中,我们总会遇到一些问题。比如说在CAD打开之前,修改注册表的内容,或者解决CAD在没有完全加载想要的dll情况下,功能运行报错的bug。因此,下面和大家介绍一下IExtensionApplication接口 …...
kafka-11-kafka的监控工具和常用配置参数
kafka官方文档 参考Kafka三款监控工具比较 1 查看kafka的版本 进入kafka所在目录,通过查看libs目录下的jar包。 2.11是scala的版本,2.0.0是kafka的版本。 测试环境 #systemctl start zookeeper #systemctl start kafkka 2 kafka的常用配置 Kafka使用…...
前端PWA渐进式加载技术
1.什么是PWA? 渐进式网络应用(PWA)是谷歌在2015年底提出的概念。基本上算是web应用程序,但在外观和感觉上与原生app类似。支持PWA的网站可以提供脱机工作、推送通知和设备硬件访问等功能。 2.PWA有那些优点? 更小更…...
【ubuntu 22.04不识别ch340串口】
这个真是挺无语的,发现国内厂商普遍对开源环境不感兴趣,ch340官方linux驱动好像被厂家忘了,现在放出来的驱动还是上古内核版本: 于是,驱动居然要用户自己编译安装。。还好网上有不少大神:链接,…...
解决:eclipse绿化版Resource注解报Resource cannot be resolved to a type问题
如图: 网上解决教程很多,我的eclipse是绿化版的,不需要安装 解决办法如下: 1、在eclipse中,进入到Window->Preferences->Java->Installed JREs中 默认显示如下: 2、点击Add-->Standard VM--…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
【实施指南】Android客户端HTTPS双向认证实施指南
🔐 一、所需准备材料 证书文件(6类核心文件) 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...
FOPLP vs CoWoS
以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...
RabbitMQ 各类交换机
为什么要用交换机? 交换机用来路由消息。如果直发队列,这个消息就被处理消失了,那别的队列也需要这个消息怎么办?那就要用到交换机 交换机类型 1,fanout:广播 特点 广播所有消息:将消息…...
React、Git、计网、发展趋势等内容——前端面试宝典(字节、小红书和美团)
React React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍,详细解释 用户: React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍&#x…...
多模态大语言模型arxiv论文略读(112)
Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文标题:Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文作者:Jea…...
