当前位置: 首页 > news >正文

【BERTopic应用 03/3】:微调参数

一、说明

        一般来说,BERTopic 在开箱即用的模型中工作得很好。但是,当您有数百万个数据要处理时,使用基本模型处理数据可能需要一些时间。在这篇文章中,我将向您展示如何微调BERTopic中的一些参数并比较它们的结果。让我们潜入。

二、BERTopic 基本型号

        我们首先检查类 BERTopic 中有哪些参数。有关详细检查,请查看此处的文件:BERTopic。在官方文档中,对每个参数及其默认值都有说明。在这里,我想挑一些参数来提及,因为这些参数在表示文档中的主题方面起着关键作用。

class BERTopic:def __init__(self,language: str = "english",top_n_words: int = 10,n_gram_range: Tuple[int, int] = (1, 1),min_topic_size: int = 10,nr_topics: Union[int, str] = None,low_memory: bool = False,calculate_probabilities: bool = False,seed_topic_list: List[List[str]] = None,embedding_model=None,umap_model: UMAP = None,hdbscan_model: hdbscan.HDBSCAN = None,vectorizer_model: CountVectorizer = None,ctfidf_model: TfidfTransformer = None,representation_model: BaseRepresentation = None,verbose: bool = False,)self.XXXself.XXX......
  • n_gram_range:默认为(1,1),即分别产生“新”和“约克”等主题词。如果要显示“纽约”,可以将此参数发送到 (1,2)。
  • umap_model:UMAP(均匀流形近似和投影)是一种降维算法,通常用于高维数据的可视化。它的工作原理是查找保留原始高维空间结构的数据的低维表示形式。
  • hdbscan_model:HDBSCAN(基于分层密度的带噪声应用程序空间聚类)是一种基于密度的聚类算法,可以识别数据集中任意形状和大小的聚类。它的工作原理是在数据中查找高密度区域并将其扩展为集群,同时还识别不属于任何集群的噪声点。

三、微调参数

我们已经了解了参数是什么以及它们的实际作用。现在,让我们对它们进行微调,并将结果与开箱即用的模型进行比较。同样,我们将使用我们之前准备的卡塔尔世界杯数据。如果您还没有下载 umap 和 hbdscan,请 pip 安装。

# Base Modelimport pandas as pd
import pickle
with open('world_cup_tweets.pkl', 'rb') as f:data = pickle.load(f)data = data.Tweet_processed.to_list()from bertopic import BERTopic
model_B = BERTopic(language="english", calculate_probabilities=True, verbose=True)
topics_B, probs_B = topic_model.fit_transform(data)
# Fine-tuned Modelimport pandas as pd
import pickle
with open('world_cup_tweets.pkl', 'rb') as f:data = pickle.load(f)data = data.Tweet_processed.to_list()from umap import UMAP
from hdbscan import HDBSCANumap_model = UMAP(n_neighbors=3, n_components=3, min_dist=0.05)
hdbscan_model = HDBSCAN(min_cluster_size=80, min_samples=40,gen_min_span_tree=True,prediction_data=True)
from bertopic import BERTopicmodel_A = BERTopic(umap_model=umap_model,hdbscan_model=hdbscan_model,top_n_words=10,language='english',calculate_probabilities=True,verbose=True,n_gram_range=(1, 2)
)
topics_A, probs_A = model.fit_transform(data)

UMAP:

  • n_neighbors=3:此参数确定 UMAP 用于近似数据局部结构的最近邻数。在这种情况下,UMAP将在构造嵌入时查看每个数据点的三个最近邻。
  • n_components=3:指定嵌入空间中的维数。默认情况下,UMAP 会将数据的维数减少到 2 维,但在这种情况下,它会将其减少到 3 维。
  • min_dist=0.05:此参数控制嵌入空间中点之间的最小距离。较高的min_dist值将导致点之间的空间越大,这可以改善聚类的分离。

HDBSCAN:

  • min_cluster_size=80:此参数指定形成聚类所需的最小点数。点少于此阈值的聚类将被标记为噪声。
  • min_samples=40:此参数确定将点视为核心点所需的邻域样本数。核心点用于构建聚类,非核心点的点被归类为噪声。
  • gen_min_span_tree=True:此参数告诉 HDBSCAN 在聚类之前构造输入数据的最小生成树。这有助于识别仅由几个点连接的聚类,其他聚类算法可能会遗漏这些点。
  • prediction_data=True:此参数指示 HDBSCAN 存储有关数据的其他信息,例如每个群集中每个点的成员资格概率。此信息可用于下游分析和可视化。

四、比较结果

        基本型号:

作者创建的基本模型

微调模型:

作者创建的微调模型

        显然,在基本模型中生成了更多主题,这解释了处理大量文本需要很长时间的事实。同时,在微调模型中,根据参数中的设置创建的主题较少。

        对于那些对结果如何随参数设置的不同组合而变化感兴趣的人。我将示例代码放在这里,您可以更改参数以检查不同的结果。

from bertopic import BERTopic
from umap import UMAP
from hdbscan import HDBSCAN# Define a list of parameters to try for UMAP
umap_params = [{'n_neighbors': 15, 'n_components': 2, 'min_dist': 0.1},{'n_neighbors': 10, 'n_components': 2, 'min_dist': 0.01},{'n_neighbors': 3, 'n_components': 2, 'min_dist': 0.001}
]# Define a list of parameters to try for HDBSCAN
hdbscan_params = [{'min_cluster_size': 100, 'min_samples': 100},{'min_cluster_size': 50, 'min_samples': 70},{'min_cluster_size': 5, 'min_samples': 50}
]# Loop over the parameter combinations and fit BERTopic models
for umap_param in umap_params:for hdbscan_param in hdbscan_params:# Create UMAP and HDBSCAN models with the current parameter combinationumap_model = UMAP(**umap_param)hdbscan_model = HDBSCAN(**hdbscan_param, gen_min_span_tree=True, prediction_data=True)# Fit a BERTopic model with the current parameter combinationmodel = BERTopic(umap_model=umap_model,hdbscan_model=hdbscan_model,top_n_words=10,language='english',calculate_probabilities=True,verbose=True,n_gram_range=(1, 2))topics, probs = model.fit_transform(data)# Visualize the hierarchy and save the figure to an HTML filefig = model.visualize_hierarchy()fig.write_html(f'model_umap_{umap_param}_hdbscan_{hdbscan_param}.html')

五、后记

关于BertTopic的应用知识点还很多,我们将在另外的文章中,逐步介绍之。谢谢阅读!
参考资料:
伯特
主题建模
深度学习
数据科学

相关文章:

【BERTopic应用 03/3】:微调参数

一、说明 一般来说,BERTopic 在开箱即用的模型中工作得很好。但是,当您有数百万个数据要处理时,使用基本模型处理数据可能需要一些时间。在这篇文章中,我将向您展示如何微调BERTopic中的一些参数并比较它们的结果。让我们潜入。 二…...

2023年上半年数学建模竞赛题目汇总与难度分析

2023年上半年数学建模竞赛题目汇总与难度分析 ​由于近年来国赛ABC题出题方式漂浮不定,没有太大的定性,目前总体的命题方向为,由之前的单一模型问题变为数据分析评价优化或者预测类题目是B、C题的主要命题方向。为了更好地把握今年命题的主方…...

Linux下搭建java环境

文章目录 一,xshell链接linux二,linux安装jdk环境 一,xshell链接linux 这里用到的工具,VMware搭配CentOS7 64位Xshell5 操作之前确保,传输Xshell连接了虚拟机 打开Xshell,文件->新建 主机ip—>进入虚拟机,右键打开终端,输入命令:ifco…...

String、StringBuffer、StringBuilder三者的异同?

String字符串 不可变的字符序列在 jdk1.8,我们底层用 char [ ] 存储在 jdk 17,我们底层用 byte [ ] 存储 StringBuffer字符串缓冲区类 可变的字符序列,线程安全的(synchronized),效率低在 jdk1.8&#xf…...

htmlCSS-----弹性布局案例展示

目录 前言 效果展示 ​编辑 代码 思路分析 前言 上一期我们学习了弹性布局,那么这一期我们用弹性布局来写一个小案例,下面看代码(上一期链接html&CSS-----弹性布局_灰勒塔德的博客-CSDN博客) 效果展示 代码 html代码&am…...

Fiddler模拟请求发送和修改响应数据

fiddler模拟伪造请求 方法一:打断点模拟HTTP请求 1、浏览器页面填好内容后(不要操作提交),打开fiddler,设置请求前断点,点击菜单fiddler,”Rules”\”Automatic Breakpoints”\”Before Requests” 2、在…...

RH850从0搭建Autosar开发环境【23】- Davinci Configurator之DCM实操实现DID的读取写入

配置DID 一、Developer中创建SWC1.1 创建Application Component Type1.2 实例化Component二、在SWC中创建接口以及Runnable2.1 创建DID的Service Ports2.2 创建DID的Service Runnable三、在Configurator连接接口以及生成代码3.1 连接DCM与SWC3.2 生成RTE3.3 生成SWC的DID的模板…...

ChatGPT收录

VSCode插件-ChatGPT 多磨助手 多磨助手 (domore.run) Steamship Steamship 免费合集 免费chatGPT - Ant Design Pro 免费AI聊天室 (xyys.one)...

Nginx随笔

Nginx下载链接 安装命令: apt update apt install nginx 一、基础命令(Ubuntu) 1、在全局 nginx -t //检查Nginx的配置文件是否有错 systemctl start nginx //启动Nginx systemctl stop nginx //停止Nginx systemctl status nginx //查…...

61. 旋转链表

61. 旋转链表 题目-中等难度示例1. 快慢指针找到分割位置2. 连成环后截断 题目-中等难度 相关企业 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例 示例 1: 输入:head [1,2,3,4,5], k 2 输出…...

Python实现动态调用Matlab自定义函数

首先需要下载与python版本对应的matlab,并成功执行matlab中的setup.py文件 参考流程如下 https://blog.csdn.net/s1k9y9/article/details/127793053 完成上述步骤即可开始实现动态调用matlab文件。 文件目录如下 D://call/ |–matlab |–test1 |–main.m |–test2 |…...

redis集群和分片-Redis Cluster:分布式环境中的数据分片、主从复制和 Sentinel 哨兵

当涉及到 Redis 中的集群、分片、主从复制和 Sentinel 哨兵时,这些是构建分布式 Redis 环境中非常重要的概念和组件。下面详细介绍这些概念以及它们在分布式环境中的作用。 Redis Cluster Redis Cluster 是 Redis 官方提供的分布式解决方案,用于管理和…...

【数据库基础】Mysql下载安装及配置

下载 下载地址:https://downloads.mysql.com/archives/community/ 当前最新版本为 8.0版本,可以在Product Version中选择指定版本,在Operating System中选择安装平台,如下 安装 MySQL安装文件分两种 .msi和.zip [外链图片转存失…...

iptables安全与防火墙

防火墙 防火墙主要作用是隔离功能,它是部署在网络边缘或主机边缘;另外在生产中防火墙的主要作用是:决定哪些数据可以被外网访问以及哪些数据可以进入内网访问;顾名思义防火墙处于TCP协议中的网络层。 防火墙分类: 软…...

Linux 内核线程启动以及内核调用应用层程序

#include <linux/kthread.h> //内核线程头文件 static task_struct *test_task; test_task kthread_run(thread_function, NULL, "test_thread_name"); if(IS_ERR(test_task)) { pr_err("test_thread_name create fail\n"); } static int th…...

React+Typescript清理项目环境

上文 创建一个 ReactTypescript 项目 我们创建出了一个 React配合Ts开发的项目环境 那么 本文 我们先将环境清理感觉 方便后续开发 我们先来聊一下React的一个目录结构 跟我们之前开发的React项目还是有一些区别 public 主要是存放一些静态资源文件 例如 html 图片 icon之类的 …...

【linux学习】linux的模块机制

文章目录 前言模块的Hello World&#xff01; 前言 Linux允许用户通过插入模块&#xff0c;实现干预内核的目的。一直以来&#xff0c;对linux的模块机制都不够清晰&#xff0c;因此本文对内核模块的加载机制进行简单地分析。 ref:https://www.cnblogs.com/fanzhidongyzby/p/…...

用 oneAPI 实现 AI 欺诈检测:一款智能图像识别工具

简介 虚假图像和视频日益成为社交媒体、新闻报道以及在线内容中的一大隐患。在这个信息爆炸的时代&#xff0c;如何准确地识别和应对这些虚假内容已经成为一个迫切的问题。为了帮助用户更好地辨别虚假内容&#xff0c;我开发了一款基于 oneAPI、TensorFlow 和 Neural Compress…...

云计算的发展前景怎么样

云计算是当前科技领域中最受关注的领域之一,它的出现改变了传统的计算模式,使得企业和个人能够更加便捷地访问和使用计算资源。随着云计算技术的不断发展,它的前景也变得更加光明。 以下是云计算的发展前景: 云计算的市场份额将继续增长:根据市场研究机构的报告,云计算的市场份…...

opencv实战项目 手势识别-手势音量控制(opencv)

本项目是使用了谷歌开源的框架mediapipe&#xff0c;里面有非常多的模型提供给我们使用&#xff0c;例如面部检测&#xff0c;身体检测&#xff0c;手部检测等。 手势识别系列文章 1.opencv实现手部追踪&#xff08;定位手部关键点&#xff09; 2.opencv实战项目 实现手势跟踪…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...