opencv实战项目 手势识别-手势音量控制(opencv)
本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等。
手势识别系列文章
1.opencv实现手部追踪(定位手部关键点)
2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用)
3.手势识别-手势音量控制(opencv)
4.opencv实战项目 手势识别-手势控制鼠标
未完待续...
代码需要用到opencv HandTraqckModule模块 mediapipe模块和一个音量控制模块
AndreMiras/pycaw: Python Core Audio Windows Library (github.com) 音量控制模块的作者,有兴趣可以了解
手部追踪模块来自前期的我们实战内容opencv 实现手势跟踪并返回位置信息(封装调用)_陈子迩的博客-CSDN博客
下面给大家详细说一下代码
import cv2
import time
import numpy as np
from HandTraqckModule import *
import math
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
这些行导入了所需的库和模块:
cv2
: OpenCV 库,用于图像处理和显示。time
: Python 标准库,用于处理时间操作。numpy
: 数值计算库,用于插值计算。HandTraqckModule
: 自定义的手部追踪模块(你的代码中似乎有个拼写错误,正确的应该是HandTrackModule
)。math
: Python 标准库,用于数学计算。comtypes
: 用于处理 COM 接口的库。pycaw
: 用于访问 Windows 音频控制接口的库。-
devices = AudioUtilities.GetSpeakers() interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None) volume = interface.QueryInterface(IAudioEndpointVolume) volRange = volume.GetVolumeRange() minVol = volRange[0] maxVol = volRange[1]
-
这部分代码获取了默认音频输出设备的信息,并通过
pycaw
库设置了音量范围、最小音量和最大音量。 -
wCam, hCam = 1280, 720 cap = cv2.VideoCapture(0) cap.set(3, wCam) cap.set(4, hCam)
这里设置了摄像头的分辨率,并通过 OpenCV 打开摄像头。
pTime = 0
detector = handDetector(detectionCon=0.7)
初始化了上一帧的时间 pTime
,并创建了 handDetector
类的实例 detector
,设置了手势检测的置信度阈值为 0.7。
while True:success, img = cap.read()img = detector.findHands(img)lmList = detector.findPosition(img, draw=False)if len(lmList) != 0:# 从手部标记点列表中获取两个指尖的坐标x1, y1 = lmList[4][1], lmList[4][2]x2, y2 = lmList[8][1], lmList[8][2]cx, cy = (x1 + x2) // 2, (y1 + y2) // 2# 绘制手势标记和连接线cv2.circle(img, (x1, y1), 15, (255, 255, 0), cv2.FILLED)cv2.circle(img, (x2, y2), 15, (255, 0, 0), cv2.FILLED)cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 3)cv2.circle(img, (cx, cy), 10, (255, 255, 0), cv2.FILLED)# 计算手势长度length = math.hypot(x2 - x1, y2 - y1)# 映射手势长度到音量范围vol = np.interp(length, [10, 230], [minVol, maxVol])print(int(length), int(vol))# 设置系统音量volume.SetMasterVolumeLevel(vol, None)# 如果手势长度小于一定阈值,绘制一个圆圈表示手势过小if length < 50:cv2.circle(img, (cx, cy), 15, (255, 100, 100), cv2.FILLED)cTime = time.time()fps = 1 / (cTime - pTime)pTime = cTime# 绘制帧率信息cv2.putText(img, f'FPS:{int(fps)}', (40, 40), cv2.FONT_HERSHEY_PLAIN, 3, (255, 255, 0), 3)# 显示图像cv2.imshow('img', img)cv2.waitKey(1)
这部分代码是主要的处理循环,它会不断地从摄像头捕获图像,然后使用 detector
对象进行手部检测和标记绘制。随后,通过手指标记点的坐标计算手势的长度,并将这个长度映射到音量范围,然后设置系统音量。如果手势长度小于阈值,会在图像上绘制一个圆圈来表示手势过小。最后,还会绘制帧率信息并显示图像。
下面附上全部代码
总体代码
import cv2
import time
import numpy as np
from HandTraqckModule import *
import math
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume# 获取默认音频输出设备
devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
volume = interface.QueryInterface(IAudioEndpointVolume)
# 获取音量范围
volRange = volume.GetVolumeRange()
minVol = volRange[0]
maxVol = volRange[1]# 设置摄像头分辨率
wCam, hCam = 1280, 720# 打开摄像头
cap = cv2.VideoCapture(0)
cap.set(3, wCam)
cap.set(4, hCam)pTime = 0
detector = handDetector(detectionCon=0.7)while True:success, img = cap.read()img = detector.findHands(img)lmList = detector.findPosition(img, draw=False)if len(lmList) != 0:x1, y1 = lmList[4][1], lmList[4][2]x2, y2 = lmList[8][1], lmList[8][2]cx, cy = (x1 + x2) // 2, (y1 + y2) // 2# 绘制手势标记和连接线cv2.circle(img, (x1, y1), 15, (255, 255, 0), cv2.FILLED)cv2.circle(img, (x2, y2), 15, (255, 0, 0), cv2.FILLED)cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 3)cv2.circle(img, (cx, cy), 10, (255, 255, 0), cv2.FILLED)# 计算手势长度length = math.hypot(x2 - x1, y2 - y1)# 映射手势长度到音量范围vol = np.interp(length, [10, 230], [minVol, maxVol])print(int(length), int(vol))# 设置系统音量volume.SetMasterVolumeLevel(vol, None)# 如果手势长度小于一定阈值,绘制一个圆圈表示手势过小if length < 50:cv2.circle(img, (cx, cy), 15, (255, 100, 100), cv2.FILLED)cTime = time.time()fps = 1 / (cTime - pTime)pTime = cTime# 绘制帧率信息cv2.putText(img, f'FPS:{int(fps)}', (40, 40), cv2.FONT_HERSHEY_PLAIN, 3, (255, 255, 0), 3)# 显示图像cv2.imshow('img', img)cv2.waitKey(1)
相关文章:

opencv实战项目 手势识别-手势音量控制(opencv)
本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等。 手势识别系列文章 1.opencv实现手部追踪(定位手部关键点) 2.opencv实战项目 实现手势跟踪…...
Mac下编译32位Qt
不建议,MAC新版不支持32位程序!!! Mac下编译32位Qt 关于Mac10.11.4下编译32bit Qt5.6.1的问题...

企业数据库遭到360后缀勒索病毒攻击,360勒索病毒解密
在当今数字化时代,企业的数据安全变得尤为重要。随着数字化办公的推进,企业的生产运行效率得到了很大提升,然而针对网络安全威胁,企业也开始慢慢引起重视。近期,我们收到很多企业的求助,企业的服务器遭到了…...

C++11时间日期库chrono的使用
chrono是C11中新加入的时间日期操作库,可以方便地进行时间日期操作,主要包含了:duration, time_point, clock。 时钟与时间点 chrono中用time_point模板类表示时间点,其支持基本算术操作;不同时钟clock分别返回其对应…...

每天一道leetcode:1466. 重新规划路线(图论中等广度优先遍历)
今日份题目: n 座城市,从 0 到 n-1 编号,其间共有 n-1 条路线。因此,要想在两座不同城市之间旅行只有唯一一条路线可供选择(路线网形成一颗树)。去年,交通运输部决定重新规划路线,以…...
Mysql—修改用户密码(重置密码)
Mysql—修改用户密码(重置密码) 1、登录mysql 1 2 [rootlocalhost ~]# mysql -uroot -p123456 [rootlocalhost ~]# mysql -hlocalhost -uroot -p123456 如果忘记密码,则跳过MySQL的密码认证过程。步骤如下: 修改Mysql配置文件…...
ECE585 Tomasulo算法:C++ Tomasulo算法模拟器
ECE585 Tomasulo算法:C Tomasulo算法模拟器 在计算机科学中,Tomasulo算法是一种动态调度和动态执行的方法,它可以有效地处理计算机指令的依赖性。这种算法由IBM的Robert Tomasulo发明,最初用于IBM 360/91的浮点单元。在这篇文章中…...
Qt中在QLabel上画点,重写QLabel类
Qt中在QLabel上画点,重写QLabel类 QT中label进行绘图 1.首先新建一个类,让这个类继承QLabel 2.在类中对鼠标点击事件及绘图事件进行重写 3.然后在UI框架下添加label控件, 4.右键label控件,添加重写的类,将其提升为刚…...

ssm+vue小型企业办公自动化系统源码和论文PPT
ssmvue小型企业办公自动化系统源码和论文PPT013 开发工具:idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具:navcat,小海豚等 开发技术:java ssm tomcat8.5 摘 要 互联网发展至今,无论是其理论还是技术都已经成熟…...

C++ STL priority_queue
目录 一.认识priority_queue 二. priority_queue的使用 三.仿函数 1.什么是仿函数 2.控制大小堆 3.TopK问题 四.模拟实现priority_queue 1.priority_queue的主要接口框架 2.堆的向上调整算法 3.堆的向下调整算法 4.仿函数控制大小堆 五.priority_queue模拟实现整体代码和测…...

[PyTorch][chapter 50][创建自己的数据集 2]
前言: 这里主要针对图像数据进行预处理.定义了一个 class Pokemon(Dataset) 类,实现 图像数据集加载,划分的基本方法. 目录: 整体框架 __init__ load_images save_csv divide_data __len__ denormalize __g…...

SQL-每日一题【1341. 电影评分】
题目 表:Movies 表:Users 请你编写一个解决方案: 查找评论电影数量最多的用户名。如果出现平局,返回字典序较小的用户名。查找在 February 2020 平均评分最高 的电影名称。如果出现平局,返回字典序较小的电影名称。 …...

基于DBN的伪测量配电网状态估计,DBN的详细原理
目录 背影 DBN神经网络的原理 DBN神经网络的定义 受限玻尔兹曼机(RBM) DBN的伪测量配电网状态估计 基本结构 主要参数 数据 MATALB代码 结果图 展望 背影 DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,是一种非常好的分类算法,本文将DBN算法伪测量配电网…...
Python运算符全解析:技巧与案例探究
在Python编程中,运算符是强大的工具,能够使我们在数据处理和逻辑判断方面更加灵活。本篇博客将全面探讨Python中常用的运算符,包括算术、比较、逻辑、赋值、位、成员和身份运算符,通过实际案例为你展示如何妙用运算符解决问题。 …...

NPCon:AI模型技术与应用峰会北京站 (参会感受)
8月12日,我有幸参加了在北京皇家格兰云天大酒店举行的“AI模型技术与应用峰会”。 这次会议邀请了很多技术大咖,他们围绕: 六大论点 大模型涌现,如何部署训练架构与算力芯片 LLM 应用技术栈与Agent全景解析 视觉GPU推理服务部署 …...

为什么爬虫要用高匿代理IP?高匿代理IP有什么优点
只要搜代理IP,度娘就能给我们跳出很多品牌的推广,比如我们青果网路的。 正如你所看到的,我们厂商很多宣传用词都会用到高匿这2字。 这是为什么呢?高匿IP有那么重要吗? 这就需要我们从HTTP代理应用最多最广的…...

【JavaWeb】MySQL约束、事务、多表查询
1 约束 PRIMARY KEY 主键约束 UNIQUE 唯一约束 NOT NULL 非空约束 DEFAULT 默认值约束 FOREIGN KEY 外键约束 主键 主键值必须唯一且非空;每个表必须有一个主键 建表时主键约束 CREATE TABLE 表名 (字段名 字段类型 PRIMARY KEY,字段名 字段类型 );CR…...
【并发编程】自研数据同步工具优化:创建线程池多线程异步去分页调用其他服务接口获取海量数据
文章目录 场景:解决方案 场景: 前段时间在做一个数据同步工具,其中一个服务的任务是调用A服务的接口,将数据库中指定数据请求过来,交给kafka去判断哪些数据是需要新增,哪些数据是需要修改的。 刚开始的设…...

七、dokcer-compose部署springboot的jar
1、准备 打包后包名为 ruoyi-admin.jar 增加接口 httpL//{ip}:{port}/common/test/han #环境变量预application.yml 中REDIS_HOSTt的值,去环境变量去找;如果找不到REDIS_HOST就用myredis 1、Dockerfile FROM hlw/java:8-jreRUN ln -sf /usr/share/z…...
k8s 使用 containerd 运行时配置 http 私服
简介 Kubernetes 从 v1.20 开始弃用 Docker,并推荐用户切换到基于容器运行时接口(CRI)的容器引擎,如 containerd、cri-o 等。 目前使用的环境中使用了 Kubernetes v1.22.3,containerd 1.4.3,containerd 在…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...

企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...

生信服务器 | 做生信为什么推荐使用Linux服务器?
原文链接:生信服务器 | 做生信为什么推荐使用Linux服务器? 一、 做生信为什么推荐使用服务器? 大家好,我是小杜。在做生信分析的同学,或是将接触学习生信分析的同学,<font style"color:rgb(53, 1…...

以太网PHY布局布线指南
1. 简介 对于以太网布局布线遵循以下准则很重要,因为这将有助于减少信号发射,最大程度地减少噪声,确保器件作用,最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确,然…...