当前位置: 首页 > news >正文

【动态规划】回文串问题

文章目录

  • 动态规划(回文串问题)
    • 1. 回文子串
    • 2. 最长回文子串
    • 3. 回文串分割 IV
    • 4. 分割回文串 ||
    • 5. 最长回文子序列
    • 6. 让字符串成为回文串的最小插入次数

动态规划(回文串问题)

1. 回文子串

题目链接

  1. 状态表示

    f[i][j]表示 i 到 j 的子串当中是否是回文

  2. 状态转移方程

    image-20230814152744276

  3. 初始化

    最初所有的内容都是0即可

  4. 填表

    因为 i j 需要用 i + 1 来初始化,所以这个时候需要从下往上填表

  5. 返回值

    返回整个dp 表里true 的数目就可以

AC代码:

class Solution 
{
public:int countSubstrings(string s) {int n = s.size();vector<vector<bool>> dp(n, vector<bool>(n));int ret = 0;for (int i = n - 1; i >= 0; i--){for (int j = i; j < n; j++){if (s[i] == s[j]){dp[i][j] = i + 1 < j ? dp[i + 1][j - 1] : true;}if (dp[i][j]) ret++;}}return ret;}
};

2. 最长回文子串

题目链接

如果需要求一个字符串当中的最长的回文子串,需要将所有的回文子串找到,然后再所有的回文子串里面找打一个最长的就可以了

可以参考上一个题目回文子串

AC代码:

class Solution 
{
public:string longestPalindrome(string s) {// 找到所有的回文子串int n = s.size();vector<vector<bool>> dp(n, vector<bool>(n));int begin = 0, len = 1;for (int i = n - 1; i >= 0; i--){for (int j = i; j < n; j++){if (s[i] == s[j]){dp[i][j] = i + 1 < j ? dp[i + 1][j - 1] : true;}if (dp[i][j] && j - i + 1 > len){begin = i;len = j - i + 1;}}}return s.substr(begin, len);}
};

3. 回文串分割 IV

题目链接

分析:如果暴力解题的话,i 和 j 可以把整个字符串分为3份,只需要遍历所有可能分为3份的情况直接判断是否都是回文串不就可以了。但是判断回文串需要花费时间,可以使用上面两道题的方法来判断是不是回文串

AC代码:

class Solution 
{
public:bool checkPartitioning(string s) {int n = s.size();vector<vector<bool>> dp(n, vector<bool>(n));for (int i = n - 1; i >= 0; i--){for (int j = i; j < n; j++){if (s[i] == s[j]) dp[i][j] = i + 1 < j ? dp[i + 1][j - 1] : true;}}for (int i = 1; i < n - 1; i++){for (int j = i; j < n - 1; j++){if (dp[0][i - 1] && dp[i][j] && dp[j + 1][n - 1]) return true;}}return false;}
};

4. 分割回文串 ||

题目链接

  1. 状态表示

    dp[i]表示0 到 i 之间,可以把所有子串都分割为回文串的最小次数

  2. 状态转移方程

    w30l7zd85k-1692000661157.png

  3. 初始化

    所需初始位最大即可

  4. 填表

    从左到右

  5. 返回值

AC代码:

class Solution 
{
public:int minCut(string s) {int n = s.size();vector<vector<bool>> isPal(n, vector<bool>(n));for (int i = n - 1; i >= 0; i--){for (int j = i; j < n; j++){if (s[i] == s[j]) isPal[i][j] = i + 1 < j ? isPal[i + 1][j - 1] : true;}}vector<int> dp(n, INT_MAX);for (int i = 0; i < n; i++){if (isPal[0][i]) dp[i] = 0;else {for (int j = 1; j <= i; j++){if (isPal[j][i]) dp[i] = min(dp[i], dp[j - 1] + 1);}}}return dp[n - 1];}
};

5. 最长回文子序列

题目链接

  1. 状态表示

    之前以某个位置为结尾来分析状态表示,如果dp[i]表示到i位置的最长回文子序列的长度来推导状态转移方程,只有长度是分析不出来状态转移方程。

    dp[i][j]表示i j 这个区间内,最长的回文子序列的长度

  2. 状态转移方程

    l1dd6ftxae-1692070247057.png

  3. 初始化

    无需初始化

  4. 填表

    因为需要用到 后面的值,所以填表需要从下到上,从左到右

  5. 返回值

AC代码:

class Solution 
{
public:int longestPalindromeSubseq(string s) {int n = s.size();vector<vector<int>> dp(n, vector<int>(n));for (int i = n - 1; i >= 0; i--){for (int j = i; j < n; j++){if (s[i] == s[j]){dp[i][j] = i ==j ? 1 : dp[i + 1][j - 1] + 2;}else dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}return dp[0][n - 1];}
};

6. 让字符串成为回文串的最小插入次数

题目链接

  1. 状态表示

    dp[i][j]表示:i 到 j 这个区间内,成为回文串的最小插入次数

  2. 状态转移方程

    ygc0i7wp4n-1692071284065.png

  3. 初始化

  4. 填表

    从下往上,从左到右

  5. 返回值

AC代码:

class Solution 
{
public:int minInsertions(string s) {int n = s.size();vector<vector<int>> dp(n, vector<int>(n));for (int i = n - 1; i >= 0; i--){for (int j = i; j < n; j++){if (s[i] == s[j]) dp[i][j] = i + 1 < j ? dp[i + 1][j - 1] : 0;else dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) + 1;}}return dp[0][n - 1];}
};

相关文章:

【动态规划】回文串问题

文章目录 动态规划&#xff08;回文串问题&#xff09;1. 回文子串2. 最长回文子串3. 回文串分割 IV4. 分割回文串 ||5. 最长回文子序列6. 让字符串成为回文串的最小插入次数 动态规划&#xff08;回文串问题&#xff09; 1. 回文子串 题目链接 状态表示 f[i][j]表示 i 到 j …...

Laravel Swift Mail发送带附件的邮件报错 “Swift_IoException The path cannot be empty“处理

先说下情况&#xff0c;就是我要做一个发送附件的邮件发送功能&#xff0c;结果&#xff0c;报错&#xff1a;The path cannot be empty。给我整的有点迷糊&#xff0c;网上也没有类似的问题。后来&#xff0c;我检查了一下代码&#xff0c;发现有个地方&#xff0c;是需要给附…...

Linux下常见的代理服务器软件介绍

在Linux系统中&#xff0c;代理服务器是我们搭建网络环境和处理网络请求的常用工具。但是&#xff0c;你知道Linux下常见的代理服务器软件有哪些吗&#xff1f;本文将为你带来对几款常见的Linux代理服务器软件的介绍&#xff0c;帮助你选择适合的代理服务器。 一、Squid&#…...

SCSS的基本用法

1、声明变量 $ 声明变量的符号 $ 下面这张图左半部分是scss的语法&#xff0c;右半部分是编译后的css。&#xff08;整篇文章皆是如此&#xff09; 2、默认变量 !default sass 的默认变量仅需要在值后面加上 !default 即可。 如果分配给变量的值后面添加了 !default 标志…...

alertmanager创建nginx-ingress basic auth鉴权

步骤 生成密码 printf "admin:$(openssl passwd -crypt xxxxxx)\n" >> auth 创建新的 Kubernetes 密钥 kubectl create secret generic basic-auth --from-file auth -n victoria-metrics 修改 ingress 以使用 secret 中的凭证来实现基本身份验证 编辑 P…...

系列六、Redis中的五大数据类型及相关操作

一、五大数据类型 String类型、List类型、Set类型、ZSet类型、hash类型。 二、String类型 2.1、内存储存模型 2.2、常用操作命令 三、List类型 3.1、概述 list列表&#xff0c;相当于Java中的list集合。特点&#xff1a;元素有序 且 可以重复。 3.2、内存存储模型 3.3、常用…...

四大运营商的大流量卡测评,看完您会选哪个运营商?

很多朋友都说网上的流量卡资费是真的便宜&#xff0c;但是小编认为资费便宜归便宜&#xff0c;但是运营商的小心思也有不少。 ​ 今天小编就带大家看一看三大运营商推出的正规流量卡都有哪些小心思&#xff1f; 首先&#xff0c;移动推出的线上大流量卡数量是最少的&#xff…...

Apache-Maven

安装Maven 解压apache-maven到目录下 Maven目录如下 bin&#xff1a;目录中存放的是可执行文件&#xff0c;JAVA项目中的编译执行打包都要使用bin. conf:存放的是Maven的配置文件&#xff0c;本地配置、私服配置都需要在conf下的settings.xml进行配置。 lib下存放的是Maven所…...

什么是原子交换?

安全地在各个区块链网络之间传输资产对于释放被困流动性并吸引更多用户进入这一领域至关重要&#xff0c;同时也保持 Web3 的信任最小化核心价值。原子交换是一种让两个人在不依赖于中介来促成交易的情况下&#xff0c;在不同的区块链网络之间交换通证资产的方式。这为 DeFi 用…...

java springboot word文档转pdf

java springboot word文档转pdf 1、环境2、依赖3、代码 1、环境 1、java、springboot 2、maven或者gradle 3、办公软件&#xff08;自己电脑上的wps或者office等&#xff0c;如果部署到服务器上也要安装&#xff0c;linux、Mac 都有&#xff0c;自己安装&#xff09; 可能会遇…...

【Leetcode Sheet】Weekly Practice 2

Leetcode Test 1281 整数的各位积和之差(8.9) 给你一个整数 n&#xff0c;请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 提示&#xff1a; 1 < n < 10^5 【原始代码】&#xff1a; int subtractProductAndSum(int n){//1 < n < 10^5//…...

【BERTopic应用 03/3】:微调参数

一、说明 一般来说&#xff0c;BERTopic 在开箱即用的模型中工作得很好。但是&#xff0c;当您有数百万个数据要处理时&#xff0c;使用基本模型处理数据可能需要一些时间。在这篇文章中&#xff0c;我将向您展示如何微调BERTopic中的一些参数并比较它们的结果。让我们潜入。 二…...

2023年上半年数学建模竞赛题目汇总与难度分析

2023年上半年数学建模竞赛题目汇总与难度分析 ​由于近年来国赛ABC题出题方式漂浮不定&#xff0c;没有太大的定性&#xff0c;目前总体的命题方向为&#xff0c;由之前的单一模型问题变为数据分析评价优化或者预测类题目是B、C题的主要命题方向。为了更好地把握今年命题的主方…...

Linux下搭建java环境

文章目录 一&#xff0c;xshell链接linux二&#xff0c;linux安装jdk环境 一&#xff0c;xshell链接linux 这里用到的工具,VMware搭配CentOS7 64位Xshell5 操作之前确保,传输Xshell连接了虚拟机 打开Xshell,文件->新建 主机ip—>进入虚拟机,右键打开终端,输入命令:ifco…...

String、StringBuffer、StringBuilder三者的异同?

String字符串 不可变的字符序列在 jdk1.8&#xff0c;我们底层用 char [ ] 存储在 jdk 17&#xff0c;我们底层用 byte [ ] 存储 StringBuffer字符串缓冲区类 可变的字符序列&#xff0c;线程安全的&#xff08;synchronized&#xff09;&#xff0c;效率低在 jdk1.8&#xf…...

htmlCSS-----弹性布局案例展示

目录 前言 效果展示 ​编辑 代码 思路分析 前言 上一期我们学习了弹性布局&#xff0c;那么这一期我们用弹性布局来写一个小案例&#xff0c;下面看代码&#xff08;上一期链接html&CSS-----弹性布局_灰勒塔德的博客-CSDN博客&#xff09; 效果展示 代码 html代码&am…...

Fiddler模拟请求发送和修改响应数据

fiddler模拟伪造请求 方法一&#xff1a;打断点模拟HTTP请求 1、浏览器页面填好内容后&#xff08;不要操作提交&#xff09;&#xff0c;打开fiddler&#xff0c;设置请求前断点&#xff0c;点击菜单fiddler,”Rules”\”Automatic Breakpoints”\”Before Requests” 2、在…...

RH850从0搭建Autosar开发环境【23】- Davinci Configurator之DCM实操实现DID的读取写入

配置DID 一、Developer中创建SWC1.1 创建Application Component Type1.2 实例化Component二、在SWC中创建接口以及Runnable2.1 创建DID的Service Ports2.2 创建DID的Service Runnable三、在Configurator连接接口以及生成代码3.1 连接DCM与SWC3.2 生成RTE3.3 生成SWC的DID的模板…...

ChatGPT收录

VSCode插件-ChatGPT 多磨助手 多磨助手 (domore.run) Steamship Steamship 免费合集 免费chatGPT - Ant Design Pro 免费AI聊天室 (xyys.one)...

Nginx随笔

Nginx下载链接 安装命令&#xff1a; apt update apt install nginx 一、基础命令&#xff08;Ubuntu&#xff09; 1、在全局 nginx -t //检查Nginx的配置文件是否有错 systemctl start nginx //启动Nginx systemctl stop nginx //停止Nginx systemctl status nginx //查…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...