OpenCV图像处理——轮廓检测
目录
- 图像的轮廓
- 查找轮廓
- 绘制轮廓
- 轮廓的特征
- 轮廓面积
- 轮廓周长
- 轮廓近似
- 凸包
- 边界矩形
- 最小外接圆
- 椭圆拟合
- 直线拟合
- 图像的矩特征
- 矩的概念
- 图像中的矩特征
图像的轮廓

查找轮廓
binary,contours,hierarchy=cv.findContours(img,mode,method)





绘制轮廓
cv.drawContours(img,coutours,index,color,width)

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimg = cv2.imread('./汪学长的随堂资料/4/图像操作/contours.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny=cv.Canny(img_gray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
img=cv.drawContours(img,contours,-1,(0,0,255),2)
plt.imshow(img[:,:,::-1])

轮廓的特征

轮廓面积
area=cv.contourArea(cnt)
轮廓周长
perimeter=cv.arcLength(cnt,isclosed)

轮廓近似

approx=cv.approxPolyDP(cnt,epsilon,isclosed)

img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours2.png')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt=contours[0]
area=cv.contourArea(cnt)
length=cv.arcLength(cnt,True)
esplion=0.1*length
approx=cv.approxPolyDP(cnt,esplion,True)
img=cv.polylines(img,[approx],True,(0,0,255),2)
plt.imshow(img[:,:,::-1])

凸包

hull=cv.convexHull(points,clockwise,returnPoints)


img=cv.imread('./image/star 2.jpeg')
img1=img.copy()
imggray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
canny=cv.canny(imggray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
hulls=[]
for cnt in contours:hull=cv.convexHull(cnt)hulls.append(hull)
img1=cv.drawContours(img1,hulls,-1,(0,255,0),2)
plt.imshow(img1[:,:,::-1])

边界矩形


img=cv.imread('./image/arrows,jpg')
img_gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(img_gray,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
x,y,w,h=cv.boundingRect(cnt)
imgRect=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3)
plt.imshow(imgRect[:,:,::-1])

s=cv.minAreaRect(cnt)
a=cv.boxPoints(s)
a=np.int0(a)
cv.polylines(imgRect,[a],True,(0,0,255),3)
plt.imshow(imgRect[:,:,::-1])

最小外接圆

(x,y),r=cv.minEnclosingCircle(cnt)
center=(int(x),int(y))
r=int(r)
imgcircle=cv.circle(img,center,r,(0,255,0),3)
plt.imshow(imgcircle[:,:,::-1])

椭圆拟合

ellipse=cv.fitEllipse(cnt)
imgellipse=cv.ellipse(img,ellipse,(0,255,255,3))
plt.imshow(imgellipse[:,:,::-1])

直线拟合

output=cv.fitLine(points,distType,param,aeps)

[vx,vy,x,y]=cv.fitLine(cnt,cv.DIST_L2,0,0.01,0.01)
rows,cols=img.shape[:2]
lefty=int((-x*vy/vx)+y)
righty=int(((cols-x)*vy/vx)+y)
imgline=cv.line(img,(0,lefty),(cols-1,righty),(0,0,255),3)
plt.imshow(imgline[:,:,::-1])

图像的矩特征

矩的概念

图像中的矩特征


moments(array,binaryImage=False)

img=cv.imread('./image/arrows.jpg',0)
imgmn=cv.moments(img)
imghu=cv.HuMoments(imgmn)
ret,thresh=cv.threshold(img,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
mn=cv.moments(cnt)
hu=cv.HuMoments(mn)
相关文章:
OpenCV图像处理——轮廓检测
目录 图像的轮廓查找轮廓绘制轮廓 轮廓的特征轮廓面积轮廓周长轮廓近似凸包边界矩形最小外接圆椭圆拟合直线拟合 图像的矩特征矩的概念图像中的矩特征 图像的轮廓 查找轮廓 binary,contours,hierarchycv.findContours(img,mode,method)绘制轮廓 cv.drawContours(img,coutours…...
【论文阅读】基于深度学习的时序预测——Non-stationary Transformers
系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平…...
开发者如何使用讯飞星火认知大模型API?
目录 1、申请星火API接口 2、使用星火API接口 3、测试编译效果 之前我们使用网页文本输入的方式体验了讯飞星火认知大模型的功能(是什么让科大讯飞1个月股价翻倍?),本篇博文将从开发者角度来看看如何使用讯飞星火认知大模型API…...
linux 系统中vi 编辑器和库的制作和使用
目录 1 vim 1.1 vim简单介绍 1.2 vim的三种模式 1.3 vim基本操作 1.3.1命令模式下的操作 1.3.2 切换到文本输入模式 1.3.3 末行模式下的操作 2 gcc编译器 2.1 gcc的工作流程 2.2 gcc常用参数 3 静态库和共享(动态)库 3.1库的介绍 3.2静态…...
麒麟arm架构 编译安装qt5.14.2
1、先在官网下载qt源码: https://download.qt.io/archive/qt/5.14/5.14.2/single/[qt源码下载地址] 2、解压编译 使用tar -xvf qt-everywhere-src-5.14.2.tar.xz 解压压缩包 cd qt-everywhere-src-5.14.2 执行 ./configure --prefix/usr/local/qt.5.14.2 make -…...
【springmvc系】利用RequestBodyAdviceAdapter做接口鉴权
需求 有个简单的需求,对于第三方接口我们需要做个简单的鉴权机制,这边使用的是非对称性加密的机制。我们提供三方公钥,他们通过公钥对接口json报文使用加密后的报文请求,我们通过对接收过来的请求某一个加密报文字段来进行RSA解密…...
ROS学习笔记(三)---好用的终端Terminator
ROS学习笔记文章目录 01. ROS学习笔记(一)—Linux安装VScode 02. ROS学习笔记(二)—使用 VScode 开发 ROS 的Python程序(简例) 一、Terminator是什么? 在前面的学习中,为了运行hello.py我是在vscode频繁的点击运行窗口的“”号…...
NFT Insider#102:The Sandbox重新上线LAND桥接服务,YGG加入Base生态
引言:NFT Insider由NFT收藏组织WHALE Members(https://twitter.com/WHALEMembers)、BeepCrypto(https://twitter.com/beep_crypto)联合出品,浓缩每周NFT新闻,为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周…...
Webpack 的 sass-loader 在生产模式下最小化 CSS 问题
学习webpack时候我发现一个问题: 将mode 改为production模式后,生成的css会被压缩了,但是我并没有引入CssMinimizerPlugin插件,然后我试着将optimization.minimize 设置为false,测试是否为webpack自带的压缩࿰…...
pytest自动化测试框架tep环境变量、fixtures、用例三者之间的关系
tep是一款测试工具,在pytest测试框架基础上集成了第三方包,提供项目脚手架,帮助以写Python代码方式,快速实现自动化项目落地。 在tep项目中,自动化测试用例都是放到tests目录下的,每个.py文件相互独立&…...
vue自定义穿梭框支持远程滚动加载
分享-2023年资深前端进阶:前端登顶之巅-最全面的前端知识点梳理总结,前端之巅 *分享一个使用比较久的🪜 技术框架公司的选型(老项目):vue2 iview-ui 方案的实现思路是共性的,展现UI样式需要你们自定义进行更改&#…...
TCP 协议十大相关特性总结
目录 一、TCP特性 二、报文格式 TCP十大核心特性 1. 确认应答 2. 超时重传 3. 连接管理(三次握手,四次挥手) 三次握手 四次挥手 4. 滑动窗口 情况一:接收方的ACK丢失 情况二:发送方的数据包丢失 5. 流量控制 6. 拥塞控制 7. 延迟应答 8. 捎带应答 9. 字节流粘包问题 10. TCP的…...
文档控件DevExpress Office File API v23.1新版亮点 - 支持.NET MAUI
DevExpress Office File API是一个专为C#, VB.NET 和 ASP.NET等开发人员提供的非可视化.NET库。有了这个库,不用安装Microsoft Office,就可以完全自动处理Excel、Word等文档。开发人员使用一个非常易于操作的API就可以生成XLS, XLSx, DOC, DOCx, RTF, CS…...
分割字符串的最大得分
题目: 给你一个由若干 0 和 1 组成的字符串 s ,请你计算并返回将该字符串分割成两个 非空 子字符串(即 左 子字符串和 右 子字符串)所能获得的最大得分。 「分割字符串的得分」为 左 子字符串中 0 的数量加上 右 子字符串中 1 的…...
ASR 语音识别接口封装和分析
这个文档主要是介绍一下我自己封装了 6 家厂商的短语音识别和实时流语音识别接口的一个包,以及对这些接口的一个对比。分别是,阿里,快商通,百度,腾讯,科大,字节。 zxmfke/asrfactory (github.c…...
C 语言的 ctype.h 头文件
C 语言的 ctype.h 头文件包含了很多字符函数的函数原型, 可以专门用来处理一个字符, 这些函数都以一个字符作为实参. ctype.h 中的字符测试函数如表所示: 这些测试函数返回 0 或 1, 即 false 或 true. ctype.h 中的字符映射函数如表所示: 字符测试函数不会修改原始实参, 只会…...
Linux系统编程:采用管道的方式实现进程间通信
目录 一. 进程间通信概述 二. 管道的概念 三. 通过管道实现进程间通信 3.1 实现原理 3.2 匿名管道创建系统接口pipe 3.3 管道通信的模拟实现 3.4 管道通信的访问控制规则 3.5 管道通信的特点 四. 通过匿名管道实现进程池 4.1 进程池的概念 4.2 进程池的模拟实现 五…...
网络安全面试题
什么是SQL注入攻击 SQL 注入攻击是一种常见的 Web 应用程序安全漏洞,攻击者通过在 Web 应用程序的输入框、搜索框、登陆框等地方注入恶意的 SQL 语句,从而获取未授权的访问权限或者窃取敏感数据。攻击者利用注入的 SQL 语句执行恶意操作,例如…...
如何成为游戏主程
前言 前段时间有人在知乎上提问,如何成为主程,技术毋庸置疑是最重要的,但很多事情我认为主要是要有思路和品位。 1、技术 1、技术是程序员吃饭的手艺,打磨自己的手艺肯定无可厚非 2、保持对技术的热爱,不断学习&…...
SSM整合(XML方式)
文章目录 SSM整合之后xml方式1 系统环境1.1 软件环境1.2 项目环境1.3 配置web.xml1.4 配置jdbc.properties文件1.5 配置SpringMVC核心文件1.6 配置Spring的核心文件1.7 配置MyBatis的核心文件1.8 配置数据库1.9 配置文件位置 2 编写后端代码2.1 编写实体类2.2 编写Dao接口2.3 编…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...
