当前位置: 首页 > news >正文

Spark基础-任务提交相关参数

整理一下用过的spark相关的参数

spark应用提交命令spark-submit的常用参数(使用spark-submit --help可以查看所有参数, 有一些参数在下面的spark配置属性定义了,也没有额外列出)

参数默认值含义
--master local[*]spark集群的master url,可以是yarn, local等值(master url取值列表 )
--deploy-mode client有cluster和client两种模式,决定driver是在worker节点上,还是在本地作为一个外部client。
--name/应用的名称
--conf /额外的spark配置属性,以key=value的形式表示
--py-files/用逗号分隔的.zip, .egg, .py文件,将其路径防止在PYTHONPATH给python应用使用

常用spark配置属性

参数默认大小含义官方文档对应类别
spark.driver.memory1gdriver内存,在client模式下必须通过spark-submit的 --driver-memory来设置,而不能通过SparkConf来设置Application Properties
spark.driver.cores1driver对应的核数,只有在cluster模式下可以设置Application Properties
spark.driver.memoryOverheaddriverMemory * spark.driver.memoryOverheadFactor, 最小值为384M在cluster模式下driver被分配的non-heap 内存。这块内存是用于虚拟机的开销、内部的字符串、还有一些本地开销(比如python需要用到的内存)等。当spark.memory.offHeap.enabled=true时,非堆内存包括堆外内存和其他driver进程使用的内存(例如与PySpark driver一起使用的python进程)和其他在同一个容器中运行的非driver进程使用的内存 。 所以运行driver的容器的最大内存大小由spark.driver.memoryOverhead和spark.driver.memory之和确定。Application Properties
spark.driver.memoryOverheadFactor0.1driver 内存被分配为non-heap内存的比例,如果出现了"Memory Overhead Exceeded",调大这个比例有助于预防这个错误。如果spark.driver.memoryOverhead被设置了这个参数就会被忽略。Application Properties
spark.executor.memory1gexecutor的内存大小Application Properties
spark.executor.pyspark.memoryNot set每个executor被分配给pyspark使用的内存,如果设置了就限制了pyspark的内存上线;如果不设置spark不会限制python的内存使用,取决于应用本身是否会超出与其他non-JVM共享的overhead 内存。Application Properties
spark.executor.memoryOverheadexecutorMemory * spark.executor.memoryOverheadFactor, 最小值为384M每个executor被分配的额外内存。这块内存是用于虚拟机的开销、内部的字符串、还有一些本地开销(比如python需要用到的内存)等。当spark.executor.pyspark.memory没有配置时,额外内存还包括pyspark的executer内存, 也包括同一个容器中的其他non-executor进程。所以运行executor的容器的最大内存大小由spark.executor.memoryOverhead, spark.executor.memory, spark.memory.offHeap.size ,spark.executor.pyspark.memory之和确定。Application Properties
spark.executor.memoryOverheadFactor0.1executor内存被分配为non-heap内存的比例,如果出现了"Memory Overhead Exceeded",调大这个比例有助于预防这个错误。如果spark.executor.memoryOverhead被设置了这个参数就会被忽略。Application Properties
spark.driver.maxResultSize1g对于每个spark action(如collect)序列化结果的总大小限制,至少为1M,如果设为0则无限制。如果序列化结果的总大小限制超过这个限制,Job将会中断。将这个值设的很大,可能会造成driver的out-of-memory错误(取决与spark.driver.memory和JVM中对象的overhead内存),所以选取一个合适的值有助于driver产生out-of-memory错误。Application Properties
spark.executor.extraJavaOptionsnone传给executor的额外JVM选项,比如GC设置和其他日志。注意不能设置最大堆内存(-Xmx),最大推内存是通过spark.executor.memory来设置的。当应用出现堆栈溢出的时候,可能可以通过设置如--conf=spark.executor.extraJavaOptions=-Xss50M来解决Runtime Environment
spark.executor.coresyarn上为1
standalone模式时为所有可用核数
executor的核数,一个应用的总核数就是num-executors 乘以executor-coresExecution Behavior
spark.default.parallelism对于分布式算子如reduceByKeyjoin,是父RDD里最大partition数,对于像parallelize等没有父RDD的算子,取决于集群模式:Local是机器上的核数;Mesos fine grained为8,其他则是max(2, 所有executor的总核数)默认的由transformation 算子如 join, reduceByKey, and parallelize 返回的RDD的分区数Execution Behavior
spark.executor.heartbeatInterval10s每个executor与driver之间心跳的间隔。这个值需要比spark.network.timeout小很多Execution Behavior
spark.memory.fraction0.6用来执行和存储的堆内存比例,越小就涉及越频繁的spills和cached data eviction。此配置的目的是为内部元数据、用户数据结构以及稀疏、异常大的数据的不精确大小估计留出内存。推荐使用默认值,如要设置参考调优文档Memory Management
spark.memory.storageFraction0.5不受驱逐的存储内存量,是由spark.memory.fraction预留的区域大小的一部分。 该值越高,可用于执行的工作内存就越少,任务可能会更频繁地溢出到磁盘。推荐使用默认值,如要设置参考调优文档Memory Management
spark.memory.offHeap.enabledfalse如果设置为true, spark将对某些操作使用off-heap内存,此时需要将spark.memory.offHeap.size设置为正数Memory Management
spark.memory.offHeap.size0off-heap内存,对于堆内存没有影响,如果executor的总内存有硬限制注意缩减JVM堆内存的大小。Memory Management
spark.network.timeout120s所有网络交互的默认超时时间,以下的参数如果没有被设置会用这个参数来代替:spark.storage.blockManagerHeartbeatTimeoutMs, spark.shuffle.io.connectionTimeout, spark.rpc.askTimeoutspark.rpc.lookupTimeoutnetworking
spark.shuffle.io.retryWait5s(Netty only)重试提取之间等待的时间。重试造成的最大延迟默认为15秒,计算方式为maxRetries * retryWaitshuffle behavior
spark.shuffle.io.maxRetries3(Netty only)如果将其设置为非零值,则由于 IO 相关异常而失败的提取将自动重试。在面对长时间 GC 暂停或暂时性网络连接问题时,此重试逻辑有助于稳定大shuffle。shuffle behavior
spark.sql.broadcastTimeout300在广播join中广播等待时间的超时时间(s)runtime sql configuration
spark.sql.adaptive.enabledtrue当设置为true时,启用自适应查询执行,这会根据运行时的统计信息在查询执行过程中重新优化查询计划。runtime sql configuration
spark.sql.adaptive.skewJoin.enabledtrue当true且spark.sql.adaptive.enabled=true,spark会在shuffled join中通过切分倾斜的分区来动态的处理数据倾斜runtime sql configuration
spark.sql.adaptive.coalescePartitions.enabledtrue当true且spark.sql.adaptive.enabled=true,Spark将根据目标大小(由spark.sql.adaptive.advisoryPartitionSizeInBytes指定)合并连续的shuffle分区,以避免太多的小任务runtime sql configuration
spark.sql.execution.arrow.pyspark.enabledfalse如果为 true,则在 PySpark 中使用 Apache Arrow 进行列式数据传输。优化应用于1.pyspark.sql.DataFrame.toPandas。2. pyspark.sql.SparkSession.createDataFrame 当其输入是 Pandas DataFrame 或 NumPy ndarray. 以下数据类型不支持: TimestampType的ArrayTyperuntime sql configuration
spark.sql.shuffle.partitions200为join或聚合而shuffle数据时使用的默认分区数runtime sql configuration
spark.sql.hive.convertMetastoreParquettrue当设置为 true 时,内置 Parquet 读取器和写入器用于处理使用 HiveQL 语法创建的 Parquet 表,而不是 Hive serderuntime sql configuration


一个yarn模式下cluster提交,并且使用自定义python环境的例子

spark-submit \
--deploy-mode cluster \
--master yarn \
--driver-memory 4g \
--num-executors 4 \
--executor-memory 2g \
--executor-cores 2 \
--conf spark.sql.broadcastTimeout=36000 \
--conf spark.driver.maxResultSize=1g \
--conf spark.sql.shuffle.partitions=1000 \
--conf spark.yarn.dist.archives=s3a://path/py37-pyarrow.zip#python37 \
--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./python37/mypython/bin/python3 \
--conf spark.yarn.appMasterEnv.PYSPARK_DRIVER_PYTHON=./python37/mypython/bin/python3 \
--py-files s3a://path/companymapping.zip \
--queue default \
--name predict_task \
s3a://path/predict.py 20230813

参考资料:

  1. https://spark.apache.org/docs/latest/configuration.html
  2. https://spark.apache.org/docs/latest/submitting-applications.html
  3. https://spark.apache.org/docs/latest/running-on-yarn.html#configuration
  4. https://zhuanlan.zhihu.com/p/63187650

相关文章:

Spark基础-任务提交相关参数

整理一下用过的spark相关的参数 spark应用提交命令spark-submit的常用参数(使用spark-submit --help可以查看所有参数, 有一些参数在下面的spark配置属性定义了,也没有额外列出) 参数默认值含义--master local[*]spark集群的mast…...

ROS-PyQt小案例

前言:目前还在学习ROS无人机框架中,,, 更多更新文章详见我的个人博客主页【前往】 ROS与PyQt5结合的小demo,用于学习如何设计一个界面,并与ROS中的Service和Topic结合,从而控制多个小乌龟的运动…...

【算法】双指针——leetcode盛最多水的容器、剑指Offer57和为s的两个数字

盛水最多的容器 (1)暴力解法 算法思路:我们枚举出所有的容器大小,取最大值即可。 容器容积的计算方式: 设两指针 i , j ,分别指向水槽板的最左端以及最右端,此时容器的宽度为 j - i 。由于容器…...

idea 使用debug 启动项目的时候 出现 Method breakpoints may dramatically slow down debugging

问题: 1. 写了一段时间的代码,在debug启动项目后提示:Method breakpoints may dramatically slow down debugging 但是正常启动是可以的,debug不行。 2. idea 里面的项目,很多地方都有断点,现在想要取消全部的断点…...

Tomcat的一些配置问题(server.xml/catalina.sh)

在同一机器中运行多个Tomcat时,如果不修改server.xml的端口参数,会出现端口冲突使得Tomcat异常;Tomcat默认配置中,JAVA_OPTS不会设置太大,一般需要在catalina.sh中增加一行配置来加大该参数值。 目录 1.Server.xml配置…...

飞天使-jenkins进行远程linux机器修改某个文件的思路

文章目录 jenkins配置的方式jenkins中执行shell的思路 jenkins配置的方式 jenkins中执行shell的思路 下面的脚本别照抄,只是一个思路 ipall"$ips"# 将文本参数按行输出为变量 while IFS read -r line; doecho "$line" if [[ ! -z $line ]] &…...

Revit SDK 介绍:PanelSchedule 配电盘明细表

前言 这个例子介绍 Revit 的配电盘明细表,PanelSchedule。Revit 的电器专业在国内用的并不是十分广泛,但从功能上来说还是比较完整的。 内容 这个例子里有三个命令: PanelScheduleExport - 导出配电盘明细表InstanceViewCreation - 创建配…...

Java后端实现不用pagehelper。手写分页如何实现?

Java后端实现不用pagehelper。手写分页如何实现? 如果你不使用PageHelper这样的分页插件,你可以手动实现分页逻辑。下面是一个使用Java后端手写分页的示例: 首先,确定每页显示的数据量和当前页码。 int pageSize 10; // 每页显示的数据量…...

spring 缓存

1.spring缓存注解,可以丢在controller,也可以丢在service,也可以丢在mapper。 2.手动操作缓存使用: Autowiredprivate CacheManager cacheManager;3.添加缓存 //添加缓存 Override Cacheable(cacheNames "test", key…...

vue3.0 element-plus 不同版本 el-popover 循环优化

表格内循环el-popover 渲染以后的页面,数据量很大的时候页面会卡,生成的代码: 解决思路:将el-popover提出来,不参与循环,让el-popover只渲染一次 1、以1.1.0-beta.24版为例(低版本)…...

计算机网络实验4:HTTP、DNS协议分析

文章目录 1. 主要教学内容2. HTTP协议3. HTTP分析实验【实验目的】【实验原理】【实验内容】【实验思考】 4. HTTP分析实验可能遇到的问题4.1 捕捉不到http报文4.2 百度是使用HTTPS协议进行传输4.3 Wireshark获得数据太多如何筛选4.4 http报文字段含义不清楚General&#xff08…...

敏捷项目管理如何做好Sprint Backlog?迭代管理

什么是Sprint Backlog? Sprint Backlog是Scrum的主要工件之一。在Scrum中,团队按照迭代的方式工作,每个迭代称为一个Sprint。在Sprint开始之前,PO会准备好产品Backlog,准备好的产品Backlog应该是经过梳理、估算和优先…...

实验三 图像分割与描述

一、实验目的: (1)进一步掌握图像处理工具Matlab,熟悉基于Matlab的图像处理函数。 (2)掌握图像分割方法,熟悉常用图像描述方法。 二、实验原理 1.肤色检测 肤色是人类皮肤重要特征之一&#xff…...

npm使用国内淘宝镜像的方法(两种)

一、通过命令配置 1、设置淘宝镜像源 npm config set registry https://registry.npm.taobao.org/ 2、设置官方镜像源 npm config set registry https://registry.npmjs.org 3、查看镜像使用状态: npm config get registry 如果返回https://registry.npm.taobao.org…...

05应用程序设计和文件操作

一、 给应用程序设置菜单栏 比如: 在qt中,如果想要使用菜单栏功能,那么界面的基类要选择QMainWindow,不能选择QWidget QDialog 实现菜单栏步骤如下: 第一步:在UI设计师,直接双击菜单栏 第二步:在UI设计师,修改文本内容和其他设置 进行设置 设置的效果图如下: …...

【果树农药喷洒机器人】Part8:果树对靶变量喷药实验

📢:博客主页 【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍 收藏 ⭐不迷路🙉 📢:内容若有错误,敬请留言 📝指正…...

framework.beans.factory.annotation.Autowired(required=true)}

将其它项目复制过来,启动后会报错 15:24:55.880 [main] ERROR o.s.b.SpringApplication - [reportFailure,843] - Application run failed org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name containerDataHandleC…...

【应用笔记】使用 CW32 实现电池备份(VBAT)功能

前言 电池备份(VBAT)功能的实现方法,一般是使用 MCU 自带的 VBAT 引脚,通过在该引脚连接钮扣电池,当系统电源因故掉电时,保持 MCU 内部备份寄存器内容和 RTC 时间信息不会丢失。 本文档介绍了如何基于 C…...

探讨uniapp的navigator 页面跳转问题

navigator 页面跳转。该组件类似HTML中的<a>组件&#xff0c;但只能跳转本地页面。目标页面必须在pages.json中注册。 "tabBar": {"color": "#7A7E83","selectedColor": "#3cc51f","borderStyle": "bl…...

使用Epoll实现高效的多路I/O转接

文章目录 概述1. 理解Epoll机制2. Epoll的三个主要函数3. 基于Epoll实现多路I/O转接4. 总结 概述 在网络编程中&#xff0c;高效地处理大量并发连接是提升系统性能的关键。传统的多线程或多进程模型在这种情况下可能会导致资源消耗过大&#xff0c;而Epoll&#xff08;事件驱动…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...