当前位置: 首页 > news >正文

05应用程序设计和文件操作

一、 给应用程序设置菜单栏

比如:

在qt中,如果想要使用菜单栏功能,那么界面的基类要选择QMainWindow,不能选择QWidget QDialog
实现菜单栏步骤如下:
第一步:在UI设计师,直接双击菜单栏
在这里插入图片描述

第二步:在UI设计师,修改文本内容和其他设置
在这里插入图片描述

进行设置
在这里插入图片描述

设置的效果图如下:
在这里插入图片描述

给菜单选项,增加图片资源
在这里插入图片描述

二、输入对话框(QInputDialog)

让用户比较方便的输入一些单一信息(The QInputDialog class provides a simple convenience dialog to get a single value from the use

相关文章:

05应用程序设计和文件操作

一、 给应用程序设置菜单栏 比如: 在qt中,如果想要使用菜单栏功能,那么界面的基类要选择QMainWindow,不能选择QWidget QDialog 实现菜单栏步骤如下: 第一步:在UI设计师,直接双击菜单栏 第二步:在UI设计师,修改文本内容和其他设置 进行设置 设置的效果图如下: …...

【果树农药喷洒机器人】Part8:果树对靶变量喷药实验

📢:博客主页 【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍 收藏 ⭐不迷路🙉 📢:内容若有错误,敬请留言 📝指正…...

framework.beans.factory.annotation.Autowired(required=true)}

将其它项目复制过来,启动后会报错 15:24:55.880 [main] ERROR o.s.b.SpringApplication - [reportFailure,843] - Application run failed org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name containerDataHandleC…...

【应用笔记】使用 CW32 实现电池备份(VBAT)功能

前言 电池备份(VBAT)功能的实现方法,一般是使用 MCU 自带的 VBAT 引脚,通过在该引脚连接钮扣电池,当系统电源因故掉电时,保持 MCU 内部备份寄存器内容和 RTC 时间信息不会丢失。 本文档介绍了如何基于 C…...

探讨uniapp的navigator 页面跳转问题

navigator 页面跳转。该组件类似HTML中的<a>组件&#xff0c;但只能跳转本地页面。目标页面必须在pages.json中注册。 "tabBar": {"color": "#7A7E83","selectedColor": "#3cc51f","borderStyle": "bl…...

使用Epoll实现高效的多路I/O转接

文章目录 概述1. 理解Epoll机制2. Epoll的三个主要函数3. 基于Epoll实现多路I/O转接4. 总结 概述 在网络编程中&#xff0c;高效地处理大量并发连接是提升系统性能的关键。传统的多线程或多进程模型在这种情况下可能会导致资源消耗过大&#xff0c;而Epoll&#xff08;事件驱动…...

流程挖掘in汽车丨宝马的流程效能提升实例

汽车行业在未来10年里&#xff0c;可能会面临比过去50年更多的变化。电动化、智能化、共享化和自动驾驶等方面的趋势可能给企业流程带来以下挑战&#xff1a; 供应链管理-电动化和智能化的发展可能导致供应链中的零部件和系统结构发生变化&#xff0c;企业需要重新评估和优化供…...

微信小程序实现当前页面更新上一个页面

日常项目中需要实现的一个价格脱敏功能&#xff1a;通过点击页面二中的查看完整信息 点击回退按钮实现页面一中的价格显露出来 通过查询了大量资料发现 大多数都是通过调用上一个接口的onload 或者onshow 实现视图更新 经测试后 发现 无法实现 只能更改数据 无法更新视图 实现…...

基于PSO-KELM的时间序列数据预测(含对比实验)

前段时间有粉丝私信想让我出一期对时间序列预测的文章&#xff0c;所以今天它来了。 时间序列数据&#xff0c;如股指价格&#xff0c;具有波动性、非线性和突变的特点&#xff0c;对于这类数据的预测往往需要可靠强健的预测模型&#xff0c;而传统的机器学习算法如SVM、BP等…...

线性代数(二) 矩阵及其运算

前言 行列式det(A) 其实表示的只是一个值 ∣ a b c d ∣ a d − b c \begin{vmatrix} a & b\\ c & d\end{vmatrix} ad -bc ​ac​bd​ ​ad−bc&#xff0c;其基本变化是基于这个值是不变。而矩阵表示的是一个数表。 定义 矩阵与线性变换的关系 即得 ( a 11 a 12…...

【图像分类】理论篇(4)图像增强opencv实现

随机旋转 随机旋转是一种图像增强技术&#xff0c;它通过将图像以随机角度进行旋转来增加数据的多样性&#xff0c;从而帮助改善模型的鲁棒性和泛化能力。这在训练深度学习模型时尤其有用&#xff0c;可以使模型更好地适应各种角度的输入。 原图像&#xff1a; 旋转后的图像&…...

Centos下的tcpdump抓包用法

先查一下是否安装, 无的话装一下 (版本低的用yum install) : rpm -qa tcpdump dnf install tcpdump 1. 列出能抓包的网卡: tcpdump -D | --list-interfaces 2. 在eth0网卡上抓来源为10.1.1.1 的包, 只抓一个包 (-n这里是不解析DNS) : tcpdump -i eth0 -n src 10.1.1.1 -…...

自然语言处理从入门到应用——LangChain:记忆(Memory)-[记忆的存储与应用]

分类目录&#xff1a;《自然语言处理从入门到应用》总目录 使用SQLite存储的实体记忆 我们将创建一个简单的对话链&#xff0c;该链使用ConversationEntityMemory&#xff0c;并使用SqliteEntityStore作为后端存储。使用EntitySqliteStore作为记忆entity_store属性上的参数&am…...

微服务与Nacos概述-5

引入OpenFeign 添加依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency><groupId>com.alibaba.cloud</groupId>…...

第九章 动态规划part08(代码随想录)

139.单词拆分 1. 确定dp[i][j] dp数组以及下标的含义一维dp数组的递推公式 dp[i] : 字符串长度为i的话&#xff0c;dp[i]为true&#xff0c;表示可以单词能被在字典中出现的单词组成。 dp[s.size()] true; 说明可以利用字典中出现的单词拼接出 s 。 2. 一维dp数组的递推公式…...

智能家居(1)---工厂模式实现灯光控制(继电器组)以及火灾报警模组的封装

采用工厂模式以面向对象的方式来封装各种设备模块&#xff0c;方便整合项目以及后期的维护和扩展 mainPro.c&#xff08;主函数&#xff09; #include <stdio.h> #include "controlDevice.h"struct Devices *pdeviceHead NULL; //设备工厂链…...

kubernetes的存储卷使用

目录 一、为什么使用存储卷 二、emptyDir存储卷 1.概念 2.创建Pod emptyDir 3. 验证emptyDir存储卷 三、hostPath存储卷 1.概念 2.创建Pod hostPath 3.验证hostPath存储卷 三、nfs共享存储卷 1.概念 2.安装nfs&#xff0c;配置nfs服务 3.创建Pod 4.验证nfs存储卷 一、…...

centos 之安装 openssl 1.1.1报错

源码make时报错&#xff0c;可能是系统的perl的版本太低问题。 [rootlocalhost ~]# cpan -a | grep Test::More Test::More 0.92 1.302171 EXODIST/Test-Simple-1.302171.tar.gz [rootlocalhost ~]# cpan -a | grep Text::Template [rootlocalhost ~]# …...

matlab使用教程(16)—图论中图的定义与修改

1.修改现有图的节点和边 此示例演示如何使用 addedge 、 rmedge 、 addnode 、 rmnode 、 findedge 、 findnode 及 subgraph 函数访问和修改 graph 或 digraph 对象中的节点和/或边。 1.1 添加节点 创建一个包含四个节点和四条边的图。s 和 t 中的对应元素用于指定每条…...

【C++面向对象】--- 继承 的奥秘(下篇)

个人主页&#xff1a;平行线也会相交&#x1f4aa; 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 平行线也会相交 原创 收录于专栏【C之路】&#x1f48c; 本专栏旨在记录C的学习路线&#xff0c;望对大家有所帮助&#x1f647;‍ 希望我们一起努力、成长&…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...