当前位置: 首页 > news >正文

ES 概念

es 概念

Elasticsearch是分布式实时搜索、实时分析、实时存储引擎,简称(ES)成立于2012年,是一家来自荷兰的、开源的大数据搜索、分析服务提供商,为企业提供实时搜索、数据分析服务,支持PB级的大数据。 -- 公司网站: https://www.elastic.co

基于Apache Lucene 开源搜索引擎,Lucene是目前公认的性能最好,最先进的,功能最全的搜索引擎

lElasticsearch使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,通过简单RESTfulAPI来隐藏Lucene的复杂性,从而让全文搜索变得简单。 超出你的想像,从10亿的数据查出一条只需要1-2秒内。

l实时分析 ,实时搜索 ,可分布,可扩展到上百台PB机器。

l著名的gitHub网站 用es来搜索 20TB的数据。包括13**亿文件与1300亿行**的代码。

l集群:多台Es服务器的结合的统称叫ES集群,一个集群包含多台服务器,多个节点。

l 节点:一个节点是你集群中的一个服务器,作为集群的一部分,它存储你的数据,参与集群的索引和搜索功能。

  1. 索引(Index)

    • 索引是Elasticsearch中的主要数据容器,类似于关系型数据库中的表。它是一种逻辑容器,用于组织和存储具有相似结构的文档。

    • 每个索引都有一个唯一的名称,用于在Elasticsearch中标识和引用它。

    • 索引定义了文档的存储方式、分片和副本配置等信息。

  2. 类型(Type)(已弃用):

    • 在较早的Elasticsearch版本中,索引内部可以包含不同类型的文档,每种类型表示不同的数据结构。例如,在一个名为"people"的索引中,可以有"employee"类型和"customer"类型。

    • 类型有助于对不同类型的文档进行分类,但从Elasticsearch 7.0版本开始,多类型的支持已被弃用,一个索引只能包含一种类型的文档。

  3. 文档(Document)

    • 文档是Elasticsearch中的基本数据单元,类似于关系型数据库中的行。每个文档表示一条具体的数据记录。

    • 文档由一组字段(Fields)组成,每个字段存储特定的数据。字段可以是文本、数字、日期等各种类型。

    • 每个文档都有一个唯一的标识,称为文档ID。

关系:

  • 在一个索引内,您可以存储多个文档。

  • 文档可以有不同的字段,这些字段可以是各种数据类型,如字符串、数字、日期等。

  • 类型(Type)在较新的Elasticsearch版本中已被弃用,所以现在一个索引只包含一种类型的文档。

  • 索引为文档提供了逻辑容器,帮助您组织和存储数据,同时也定义了数据的分片和副本配置。

  • 每个文档都有一个唯一的文档ID,通过该ID可以准确地检索和更新文档。

总结:索引是数据的逻辑容器,文档是基本的数据单位,类型(现已弃用)曾用于在索引内部区分不同的数据结构。从Elasticsearch 7.0版本开始,推荐使用单一类型的索引结构来组织和存储文档。

  1. 分片(Shard)

    • 分片是将索引数据分割成更小的单元,以便分布式存储和处理数据。每个索引可以被分成多个分片。

    • 每个分片是一个独立的、自包含的数据单元,它包含了索引的部分数据以及相关的索引结构信息。

    • 分片允许Elasticsearch将数据分布到多个节点上,从而实现数据的并行处理和更高的吞吐量。

    • 默认情况下,每个索引包含5个主分片,您可以在创建索引时指定主分片的数量。

  2. 复制分片(Replica Shard)

    • 复制分片是每个主分片的副本,它用于提高系统的可靠性和读取性能。

    • 每个主分片可以有零个或多个复制分片。复制分片的数量决定了索引的冗余性和查询的并行性。

    • 复制分片分布在不同的节点上,当主分片或节点发生故障时,复制分片可以继续提供服务,确保数据的可用性。

    • 默认情况下,每个主分片有一个复制分片,总的数据副本数量(主分片+复制分片)为2。

关系:

  • 每个索引都被分成多个主分片,主分片可以分布在集群中的不同节点上,实现数据的分布式存储和并行处理。

  • 每个主分片可以有零个或多个复制分片,复制分片提供数据的冗余副本和更高的读取性能。

  • 主分片和其对应的复制分片构成了数据的多副本存储,确保了数据的高可用性和容错能力。

  • 分片和复制分片的数量共同决定了索引的性能、可靠性和吞吐量。适当的分片和复制策略是为了满足不同的应用场景需求。

总结:分片和复制分片是Elasticsearch中实现分布式存储、提高性能和可靠性的关键机制。分片将索引数据切分成小单元,实现并行处理,而复制分片提供数据的冗余和读取性能增强。它们共同构成了Elasticsearch集群的核心架构。

 

相关文章:

ES 概念

es 概念 Elasticsearch是分布式实时搜索、实时分析、实时存储引擎,简称(ES)成立于2012年,是一家来自荷兰的、开源的大数据搜索、分析服务提供商,为企业提供实时搜索、数据分析服务,支持PB级的大数据。 -- …...

Fairy下载和使用

写在最前:本系列中将会涉及到 Unity,C#,Lua和FairyGUI(FGUI)。 FairyGUI介绍 官网: FairyGUI 编辑器下载: FairyGUI 截至文档记录最新版: https://res.fairygui.com/FairyGUI-Ed…...

隧道HTTP优化程序示例

作为专业爬虫程序员,我们经常需要使用代理服务器处理大量的请求。但是,单一服务器往往无法承担高并发请求和HTTPS加密的压力,这时候我们可以利用CDN来优化性能,并实现反向代理和HTTPS加速。下面,让我们一步步来了解。 …...

Flink源码之State创建流程

StreamOperatorStateHandler 在StreamTask启动初始化时通过StreamTaskStateInitializerImpl::streamOperatorStateContext会为每个StreamOperator 创建keyedStatedBackend和operatorStateBackend,在AbstractStreamOperator中有个StreamOperatorStateHandler成员变量…...

selenium常见等待机制及其特点和使用方法

目录 1、强制等待 2、隐式等待 3、显示等待 1、强制等待 强制等待是在程序中直接调用Thread.sleep(timeout) ,来完成的,该用法的优点是使用起来方便,语法也比较简单,缺点就是需要强制等待固定的时间,可能会造成测试的时间过…...

C++物件数组的常用方法介绍

以下代码建立了一个物件数组Student&#xff0c;并展示了如何计算物件数组的长度&#xff0c;如何从物件数组中找到特定的对象&#xff0c;如何根据数组的不同参数进行排序&#xff0c;以及如何找到最大和最小值。 #include <iostream> #include <algorithm>using…...

云计算:新一代的技术革命

云计算&#xff0c;作为21世纪的一项重要技术革命&#xff0c;已在全球范围内引发了深远的影响。它改变了我们存储和处理数据的方式&#xff0c;使得企业无需再建设和维护昂贵的本地服务器和数据中心。本文将深入探讨云计算的基本概念&#xff0c;类型&#xff0c;主要优点&…...

数据结构—图的应用

6.4图的应用 概念回顾—生成树 生成树&#xff1a;所有顶点均由边连接在一起&#xff0c;但不存在回路的图。 一个图可以有许多棵不同的生成树、含有n个顶点 n-1 条边的图不一定是生成树所有生成树具有以下共同特点 生成树的顶点个数与图的顶点个数相同&#xff1b;生成树是图的…...

Unity 鼠标控制 UI 放大、缩小、拖拽

文章目录 1. 代码2. 测试场景 1. 代码 using UnityEngine; using UnityEngine.UI; using UnityEngine.EventSystems;public class UIDragZoom : MonoBehaviour, IDragHandler, IScrollHandler {private Vector2 originalSize;private Vector2 originalPosition;private RectTr…...

tensorflow 模型计算中,预测错误;权重参数加载

tensorflow 模型计算中&#xff0c;预测错误&#xff1b;权重参数加载 tensorflow 模型计算主要代码&#xff08;正确代码&#xff09; linear1_kernel_initializer tf.constant_initializer(numpy.transpose(data["linear1.weight"])) linear1_bias_initializer …...

Jay17 2023.8.14日报 即 留校集训阶段性总结

8.14 打了moeCTF&#xff0c;还剩一题ak Web。 Jay17-集训结束阶段性总结&#xff1a; 集训产出&#xff1a; 自集训开始以来一个半月&#xff0c;最主要做的事情有三。 一是跟课程&#xff0c;复习学过的知识&#xff0c;学习新的知识&#xff1b;目前课程已大体听完&…...

【C语言】小游戏-扫雷(清屏+递归展开+标记)

大家好&#xff0c;我是深鱼~ 目录 一、游戏介绍 二、文件分装 三、代码实现步骤 1.制作简易游戏菜单 2. 初始化棋盘(11*11) 3.打印棋盘(9*9) 4.布置雷 5.计算(x,y)周围8个坐标的和 6.排查雷 <1>清屏后打印棋盘 <2>递归展开 <3>标记雷 四、完整代…...

云服务 Ubuntu 20.04 版本 使用 Nginx 部署静态网页

所需操作&#xff1a; 1.安装Nginx 2.修改配置文件 3.测试、重启 Nginx 4.内部修改防火墙 5.配置解析 6.测试是否部署成功 1.安装Nginx // 未使用 root 账号 apt-get update // 更新apt-get install nginx // 安装 nginx 1.1.测试是否安装没问题 在网页上输入云服务的公网…...

无后效性

动态规划的概念 在上例的多阶段决策问题中&#xff0c;各个阶段采取的决策&#xff0c;一般来说是与时间有关的&#xff0c;决策依赖于当前状态&#xff0c;又随即引起状态的转移&#xff0c;一个决策序列就是在变化的状态中产生出来的&#xff0c;故有“动态”的含义&#xf…...

Kubernetes系列-删除deployment和pod

通过deployment创建的pod直接执行delete是不会正常被删除的&#xff0c;因为deployment中设置了pod的数量&#xff0c;deployment会动态维护pod的数量&#xff0c;倘若pod数量少于约定数量&#xff0c;deployment会创建pod&#xff0c;直到pod数量达到约定数量才会停止。 如若…...

kotlin字符串方法

以下是一些常用的 String 方法示例&#xff1a; 1.获取字符串长度&#xff1a; val str "Hello, Kotlin" val length str.length2.字符串比较&#xff1a; val str1 "apple" val str2 "banana" val compareResult str1.compareTo(str2)3…...

ubuntu篇---配置FTP服务,本机和docker安装

ubuntu篇---配置FTP服务 一、本机安装1.1 安装FTP服务器软件1.2 配置FTP服务 二、docker安装&#xff08;我用的这个&#xff09;2.1 创建 目录2.2 启动脚本2.3 访问2.4 如何创建一个新的用户2.5 测试2.6 使用 一、本机安装 1.1 安装FTP服务器软件 ubuntu安装vsftp sudo apt…...

SpringBoot中properties、yml、yaml的优先级

原理 配置优先级低的会先加载然后会被配置优先级高的覆盖 验证 创建SpringBoot项目&#xff08;网址&#xff09; 在resource目录下创建application.properties、application.yml、application.yaml文件 运行 结论 优先级顺序&#xff1a; properties>yml>yaml...

SHELL 基础 SHELL注释 及 执行SHELL脚本的四种方法

SHELL 脚本编写规范 &#xff1a; 脚本开头 &#xff1a; # 脚本第一行 &#xff1a; #! /bin/bash 或 #!/bin/sh &#xff08; 脚本解释器 &#xff09; # 程序段开头需要加 版本版权信息 &#xff0c;例如 &#xff1a; # Date 创建日期 # Author : 作者 # …...

【Spring】深入探索 Spring AOP:概念、使用与实现原理解析

文章目录 前言一、初识 Spring AOP1.1 什么是 AOP1.2 什么是 Spring AOP 二、AOP 的核心概念2.1 切面&#xff08;Aspect&#xff09;2.2 切点&#xff08;Pointcut&#xff09;2.3 通知&#xff08;Advice&#xff09;2.4 连接点&#xff08;Join Point&#xff09; 三、Sprin…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...