Java内存区域(运行时数据区域)和内存模型(JMM)
Java 内存区域和内存模型是不一样的东西,内存区域是指 Jvm 运行时将数据分区域存储,强调对内存空间的划分。
而内存模型(Java Memory Model,简称 JMM )是定义了线程和主内存之间的抽象关系,即 JMM 定义了 JVM 在计算机内存(RAM)中的工作方式,如果我们要想深入了解Java并发编程,就要先理解好Java内存模型。
Java运行时数据区域
众所周知,Java 虚拟机有自动内存管理机制,如果出现内存泄漏和溢出方面的问题,排查错误就必须要了解虚拟机是怎样使用内存的。
下图是 JDK8 之后的 JVM 内存布局。
JDK8 之前的内存区域图如下:
在 HotSpot JVM 中,永久代中用于存放类和方法的元数据以及常量池,比如
Class
和Method
。每当一个类初次被加载的时候,它的元数据都会放到永久代中。
永久代是有大小限制的,因此如果加载的类太多,很有可能导致永久代内存溢出,即万恶的 java.lang.OutOfMemoryError: PermGen ,为此我们不得不对虚拟机做调优。
那么,Java 8 中 PermGen 为什么被移出 HotSpot JVM 了?我总结了两个主要原因:
- 由于 PermGen 内存经常会溢出,引发恼人的 java.lang.OutOfMemoryError: PermGen,因此 JVM 的开发者希望这一块内存可以更灵活地被管理,不要再经常出现这样的 OOM
- 移除 PermGen 可以促进 HotSpot JVM 与 JRockit VM 的融合,因为 JRockit 没有永久代。
根据上面的各种原因,PermGen 最终被移除,方法区移至 Metaspace,字符串常量移至 Java Heap。
程序计数器
程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。
由于 Java 虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器内核都只会执行一条线程中的指令。
因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
如果线程正在执行的是一个 Java 方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是 Native 方法,这个计数器值则为空(Undefined)。此内存区域是唯一一个在 Java 虚拟机规范中没有规定任何 OutOfMemoryError 情况的区域。
Java虚拟机栈
与程序计数器一样,Java 虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。
虚拟机栈描述的是 Java 方法执行的内存模型:每个方法在执行的同时都会创建一个栈帧(Stack Frame,是方法运行时的基础数据结构)用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。
在活动线程中,只有位于栈顶的帧才是有效的,称为当前栈帧。正在执行的方法称为当前方法,栈帧是方法运行的基本结构。在执行引擎运行时,所有指令都只能针对当前栈帧进行操作。
1. 局部变量表
局部变量表是存放方法参数和局部变量的区域。 局部变量没有准备阶段, 必须显式初始化。如果是非静态方法,则在 index[0] 位置上存储的是方法所属对象的实例引用,一个引用变量占 4 个字节,随后存储的是参数和局部变量。字节码指令中的 STORE 指令就是将操作栈中计算完成的局部变呈写回局部变量表的存储空间内。
虚拟机栈规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出 StackOverflowError 异常;如果虚拟机栈可以动态扩展(当前大部分的 Java 虚拟机都可动态扩展),如果扩展时无法申请到足够的内存,就会抛出 OutOfMemoryError 异常。
2. 操作栈
操作栈是个初始状态为空的桶式结构栈。在方法执行过程中, 会有各种指令往
栈中写入和提取信息。JVM 的执行引擎是基于栈的执行引擎, 其中的栈指的就是操
作栈。字节码指令集的定义都是基于栈类型的,栈的深度在方法元信息的 stack 属性中。
i++ 和 ++i 的区别:
- i++:从局部变量表取出 i 并压入操作栈(load memory),然后对局部变量表中的 i 自增 1(add&store memory),将操作栈栈顶值取出使用,如此线程从操作栈读到的是自增之前的值。
- ++i:先对局部变量表的 i 自增 1(load memory&add&store memory),然后取出并压入操作栈(load memory),再将操作栈栈顶值取出使用,线程从操作栈读到的是自增之后的值。
之前之所以说 i++ 不是原子操作,即使使用 volatile 修饰也不是线程安全,就是因为,可能 i 被从局部变量表(内存)取出,压入操作栈(寄存器),局部变量表(内存)中自增,使用栈顶值更新局部变量表(寄存器更新写入内存),其中分为 3 步,volatile 保证可见性,保证每次从局部变量表读取的都是最新的值,但可能这 3 步可能被另一个线程的 3 步打断,产生数据互相覆盖问题,从而导致 i 的值比预期的小。
3. 动态链接
每个栈帧中包含一个在常量池中对当前方法的引用, 目的是支持方法调用过程的动态连接。
4.方法返回地址
方法执行时有两种退出情况:
- 正常退出,即正常执行到任何方法的返回字节码指令,如 RETURN、IRETURN、ARETURN 等;
- 异常退出。
无论何种退出情况,都将返回至方法当前被调用的位置。方法退出的过程相当于弹出当前栈帧,退出可能有三种方式:
- 返回值压入上层调用栈帧。
- 异常信息抛给能够处理的栈帧。
- PC计数器指向方法调用后的下一条指令。
本地方法栈
本地方法栈(Native Method Stack)与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行 Java 方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。Sun HotSpot 虚拟机直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出 StackOverflowError 和 OutOfMemoryError 异常。
线程开始调用本地方法时,会进入 个不再受 JVM 约束的世界。本地方法可以通过 JNI(Java Native Interface)来访问虚拟机运行时的数据区,甚至可以调用寄存器,具有和 JVM 相同的能力和权限。 当大量本地方法出现时,势必会削弱 JVM 对系统的控制力,因为它的出错信息都比较黑盒。对内存不足的情况,本地方法栈还是会抛出 nativeheapOutOfMemory。
JNI 类本地方法最著名的应该是 System.currentTimeMillis()
,JNI使 Java 深度使用操作系统的特性功能,复用非 Java 代码。 但是在项目过程中, 如果大量使用其他语言来实现 JNI , 就会丧失跨平台特性。
Java堆
对于大多数应用来说,Java 堆(Java Heap)是 Java 虚拟机所管理的内存中最大的一块。Java 堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。
堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”(Garbage Collected Heap)。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以 Java 堆中还可以细分为:新生代和老年代;再细致一点的有 Eden 空间、From Survivor 空间、To Survivor 空间等。从内存分配的角度来看,线程共享的 Java 堆中可能划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB)。
Java 堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,当前主流的虚拟机都是按照可扩展来实现的(通过 -Xmx 和 -Xms 控制)。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出 OutOfMemoryError 异常。
方法区
方法区(Method Area)与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然
Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。
Java 虚拟机规范对方法区的限制非常宽松,除了和 Java 堆一样不需要连续的内存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾收集。垃圾收集行为在这个区域是比较少出现的,其内存回收目标主要是针对常量池的回收和对类型的卸载。当方法区无法满足内存分配需求时,将抛出 OutOfMemoryError 异常。
JDK8 之前,Hotspot 中方法区的实现是永久代(Perm),JDK8 开始使用元空间(Metaspace),以前永久代所有内容的字符串常量移至堆内存,其他内容移至元空间,元空间直接在本地内存分配。
为什么要使用元空间取代永久代的实现?
- 字符串存在永久代中,容易出现性能问题和内存溢出。
- 类及方法的信息等比较难确定其大小,因此对于永久代的大小指定比较困难,太小容易出现永久代溢出,太大则容易导致老年代溢出。
- 永久代会为 GC 带来不必要的复杂度,并且回收效率偏低。
- 将 HotSpot 与 JRockit 合二为一。
运行时常量池
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。
一般来说,除了保存 Class 文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。
运行时常量池相对于 Class 文件常量池的另外一个重要特征是具备动态性,Java 语言并不要求常量一定只有编译期才能产生,也就是并非预置入 Class 文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是 String 类的 intern() 方法。
既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 异常。
直接内存
直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是 Java 虚拟机规范中定义的内存区域。
在 JDK 1.4 中新加入了 NIO,引入了一种基于通道(Channel)与缓冲区(Buffer)的 I/O 方式,它可以使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆中来回复制数据。
显然,本机直接内存的分配不会受到 Java 堆大小的限制,但是,既然是内存,肯定还是会受到本机总内存(包括 RAM 以及 SWAP 区或者分页文件)大小以及处理器寻址空间的限制。服务器管理员在配置虚拟机参数时,会根据实际内存设置 -Xmx 等参数信息,但经常忽略直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),从而导致动态扩展时出现 OutOfMemoryError 异常。
Java内存模型
Java内存模型是共享内存的并发模型,线程之间主要通过读-写共享变量(堆内存中的实例域,静态域和数组元素)来完成隐式通信。
Java 内存模型(JMM)控制 Java 线程之间的通信,决定一个线程对共享变量的写入何时对另一个线程可见。
计算机高速缓存和缓存一致性
计算机在高速的 CPU 和相对低速的存储设备之间使用高速缓存,作为内存和处理器之间的缓冲。将运算需要使用到的数据复制到缓存中,让运算能快速运行,当运算结束后再从缓存同步回内存之中。
在多处理器的系统中(或者单处理器多核的系统),每个处理器内核都有自己的高速缓存,它们有共享同一主内存(Main Memory)。
当多个处理器的运算任务都涉及同一块主内存区域时,将可能导致各自的缓存数据不一致。
为此,需要各个处理器访问缓存时都遵循一些协议,在读写时要根据协议进行操作,来维护缓存的一致性。
JVM主内存与工作内存
Java 内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量(线程共享的变量)存储到内存和从内存中取出变量这样底层细节。
Java内存模型中规定了所有的变量都存储在主内存中,每条线程还有自己的工作内存,线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存中的变量。
这里的工作内存是 JMM 的一个抽象概念,也叫本地内存,其存储了该线程以读 / 写共享变量的副本。
就像每个处理器内核拥有私有的高速缓存,JMM 中每个线程拥有私有的本地内存。
不同线程之间无法直接访问对方工作内存中的变量,线程间的通信一般有两种方式进行,一是通过消息传递,二是共享内存。Java 线程间的通信采用的是共享内存方式,线程、主内存和工作内存的交互关系如下图所示:
这里所讲的主内存、工作内存与 Java 内存区域中的 Java 堆、栈、方法区等并不是同一个层次的内存划分,这两者基本上是没有关系的,如果两者一定要勉强对应起来,那从变量、主内存、工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分,而工作内存则对应于虚拟机栈中的部分区域。
重排序和happens-before规则
在执行程序时为了提高性能,编译器和处理器常常会对指令做重排序。重排序分三种类型:
- 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。
- 指令级并行的重排序。现代处理器采用了指令级并行技术(Instruction-Level Parallelism, ILP)来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。
- 内存系统的重排序。由于处理器使用缓存和读 / 写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。
从 java 源代码到最终实际执行的指令序列,会分别经历下面三种重排序:
JMM 属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。
java 编译器禁止处理器重排序是通过在生成指令序列的适当位置会插入内存屏障(重排序时不能把后面的指令重排序到内存屏障之前的位置)指令来实现的。
happens-before
从 JDK5 开始,java 内存模型提出了 happens-before 的概念,通过这个概念来阐述操作之间的内存可见性。
如果一个操作执行的结果需要对另一个操作可见,那么这两个操作之间必须存在 happens-before 关系。这里提到的两个操作既可以是在一个线程之内,也可以是在不同线程之间。
这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。
如果 A happens-before B,那么 Java 内存模型将向程序员保证—— A 操作的结果将对 B 可见,且 A 的执行顺序排在 B 之前。
重要的 happens-before 规则如下:
- 程序顺序规则:一个线程中的每个操作,happens- before 于该线程中的任意后续操作。
- 监视器锁规则:对一个监视器锁的解锁,happens- before 于随后对这个监视器锁的加锁。
- volatile 变量规则:对一个 volatile 域的写,happens- before 于任意后续对这个 volatile 域的读。
- 传递性:如果 A happens- before B,且 B happens- before C,那么 A happens- before C。
下图是 happens-before 与 JMM 的关系
volatile关键字
volatile 可以说是 JVM 提供的最轻量级的同步机制,当一个变量定义为volatile之后,它将具备两种特性:
- 保证此变量对所有线程的可见性。而普通变量不能做到这一点,普通变量的值在线程间传递均需要通过主内存来完成。
注意,volatile 虽然保证了可见性,但是 Java 里面的运算并非原子操作,导致 volatile 变量的运算在并发下一样是不安全的。而 synchronized 关键字则是由“一个变量在同一个时刻只允许一条线程对其进行 lock 操作”这条规则获得线程安全的。
- 禁止指令重排序优化。普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致
相关文章:

Java内存区域(运行时数据区域)和内存模型(JMM)
Java 内存区域和内存模型是不一样的东西,内存区域是指 Jvm 运行时将数据分区域存储,强调对内存空间的划分。 而内存模型(Java Memory Model,简称 JMM )是定义了线程和主内存之间的抽象关系,即 JMM 定义了 …...

【HDFS】hdfs的count命令的参数详解
Usage: hadoop fs -count [-q] [-h] [-v] [-x] [-t [<storage type>]] [-u] [-e] [-s] <paths...

Lombok注解在JSON化中,JSON生成额外生成字段问题
问题描述: 定义如下对象 Dataclass A{private String A;public String getC() {return "abab";}} 执行如下逻辑 Autowiredprivate ObjectMapper objectMapper;Testpublic void test4() throws Exception {A a new A();a.setA("a");System.ou…...

docker中的jenkins之流水线构建
docker中的jenkins之流水线构建项目 1、用node这种方式(因为我用pipeline方式一直不执行,不知道为什么) 2、创建项目 创建两个参数,一个是宿主端口号,一个是docker中的端口号 3、使用git项目中的Jenkinsfile 4、编写…...

ES中倒排索引机制
在ES的倒排索引机制中有四个重要的名词:Term、Term Dictionary、Term Index、Posting List。 Term(词条):词条是索引里面最小的存储和查询单元。一段文本经过分析器分析以后就会输出一串词条。一般来说英文语境中词条是一个单词&a…...

一生一芯4——使用星火应用商店在ubuntu下载QQ、微信、百度网盘
星火应用商店可以非常方便的完成一些应用的下载,下面是官方网址 http://spark-app.store/download 我使用的是intel处理器,无需下载依赖项,直接点击软件本体 我这里下载amd64,根据自己的处理器下载对应版本 sudo apt install ./spark-stor…...

编程练习(1)
目录 一.选择题 第一题: 第二题: 第三题: 第四题: 第五题: 编辑 二.编程题 第一题: 第二题: 1.暴力方法: 2.数组法: 一.选择题 第一题: 解析&…...

pytorch安装VAE项目详解
安装VAE项目 一、 基本环境二、代码来源三、搭建conda环境四、下载数据集五、启动项目六、其他相关问题 一、 基本环境 工具版本号OSwin 11pycharm2020.1GPU3050 二、代码来源 github地址为: https://github.com/AntixK/PyTorch-VAE/blob/8700d245a9735640dda458d…...

SQL-每日一题【1517. 查找拥有有效邮箱的用户】
题目 表: Users 编写一个解决方案,以查找具有有效电子邮件的用户。 一个有效的电子邮件具有前缀名称和域,其中: 前缀 名称是一个字符串,可以包含字母(大写或小写),数字,下划线 _ &…...

Python web实战之Django 的 WebSocket 支持详解
关键词:Python, Django, WebSocket, Web 如何使用 Django 实现 WebSocket 功能?本文将详细介绍 WebSocket 的概念、Django 的 WebSocket 支持以及如何利用它来创建动态、响应式的 Web 应用。 1. WebSocket 简介 1.1 什么是 WebSocket? 在 W…...

CDN(内容分发网络)
CDN的全称是 Content Delivery Network, 即内容分发网络。CDN是构建在现有网络基础之上的智能虚拟网络,依靠部署在各地的边缘服务器,通过中心平台的负载均衡、内容分发、调度等功能模块,使用户就近获取所需内容,降低网络拥塞&a…...

前端高频面试题 Day01
文章目录 1. Map 和 Object 的不同API 不同以任意类型为 keyMap 是有序结构Map 很快WeakMap总结 2. Set 和数组的区别Set 元素不能重复API 不一样Set 是无序的,而数组是有序的 —— 这一点很少有人提到,却很关键!!!Wea…...

『C语言初阶』第八章 -隐式类型转换规则
前言 今天小羊又来给铁汁们分享关于C语言的隐式类型转换规则,在C语言中类型转换方式可分为隐式类型转换和显式类型转换(强制类型转换),其中隐式类型转换是由编译器自动进行,无需程序员干预,今天小羊课堂说的就是关于隐式类型转换…...

Fortinet数据中心防火墙及服务ROI超300%!Forrester TEI研究发布
近日,专注网络与安全融合的全球网络安全领导者 Fortinet(NASDAQ:FTNT)联合全球知名分析机构Forrester发布总体经济影响独立分析报告,详细阐述了在企业数据中心部署 FortiGate 下一代防火墙(NGFW)…...

【vue】简洁优雅的火花线、趋势线
来由 在github发现个好看易用的vue趋势线组件,特此记录。 效果 趋势图生成后效果如上,线条为渐变色,可设置是否平滑。具体线条走势,根据数据动态生成。 使用 安装 npm i vuetrend -S 引入 import Vue from "vue"…...

【软件工程】数据流图/DFD概念符号/流程图分层/数据字典
【软件工程】数据流图/DFD概念符号/流程图分层/数据字典 目录 【软件工程】数据流图/DFD概念符号/流程图分层/数据字典 一、数据流图 ( DFD ) 简介 二、数据流图 ( DFD ) 概念符号 1、数据流 2、加工 ( 核心 ) 3、数据存储 4、外部实体 三、数据流图 ( DFD ) 分层 1、…...

时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 1.Matlab实现CNN卷积神经网络时间序列预测未…...

Python中的字符串与字符编码
Hello,这里是Token_w的博客,欢迎您的到来 今天文章讲解的是Python中的字符串与字符编码,其中有基础的理论知识讲解,也有实战中的应用讲解,希望对你有所帮助 整理不易,如对你有所帮助,希望能得到…...

图数据库_Neo4j学习cypher语言_使用CQL命令002_删除节点_删除属性_结果排序Order By---Neo4j图数据库工作笔记0006
然后我们再来看如何删除节点 可以看到首先 我们这里 比如我要删除张三 可以看到 match (n:student) where n.name = "张三" delete n 这样就是删除了student集合中,name是张三的节点 然后我们再来看 如何来删除关系 match (n:student)-[r]->(m:student) where…...

C语言学习笔记---数据的存储详解
C语言程序设计笔记---015 C语言数据的存储1、数据类型的意义1.1、unsigned与signed数据类型例程11.2、补码与原码相互转换例程2 2、大小端的介绍2.1、大小端的例程12.2、大小端的例程2 --- 判断当前编译器环境属于大端或小端 3、综合练习题探究数据的存储3.1、练习题13.2、练习…...

js中的常见事件(鼠标事件,键盘事件,表单事件......)
JavaScript中的事件(Event)是指在网页中发生的某些特定操作(例如单击、加载页面等),可以被JavaScript代码捕获和处理。常见的事件有: 鼠标事件:单击(click)、双击(dblclickÿ…...

学校如何公布录取情况?源代码公布了
作为一名负责公布学生录取情况的老师,对于录取查询公布工作我们可以按照以下流程来进行公布: 1. 录取结果准备:首先,你需要确保录取结果的准确性和完整性。与招生办公室或相关部门核对录取名单,确保没有遗漏或错误。如…...

JAVA基础知识(一)——Java语言描述、变量和运算符
TOC(Java语言描述、变量和运算符) 一、JAVA语言描述 1.1 java语言描述 JDK、JRE、jVM三者之间的关系,以及JDK、JRE包含的主要结构有哪些? JDKJre java的开发工具(javac.exe java.exe javadoc.exe) jre jvmjava的核心类库 为什…...

时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 基于KNN K近邻的时间序列预测-递归预测未来(多指标评价) …...

冉冉升起的星火,再度升级迎来2.0时代!
文章目录 前言权威性评测结果 星火大模型多模态功能插件功能简历生成文档问答PPT生成 代码能力 福利 前言 前几天从技术群里看到大家都在谈论《人工智能大模型体验报告2.0》里边的内容,抱着好奇和学习的态度把报告看了一遍。看完之后瞬间被里边提到的科大讯飞的星火…...

centos7安装erlang及rabbitMQ
下载前注意事项: 第一:自己的系统版本,centos中uname -a指令可以查看,el8,el7,rabbitMQ的包不一样! 第二:根据rabbitMQ中erlang version找到想要下载rabbitMQ对应erlang版本&#x…...

项目介绍:《WeTalk》网页聊天室 — Spring Boot、MyBatis、MySQL和WebSocket的奇妙融合
目录 引言: 前言: 技术栈: 主要功能: 功能详解: 1. 用户注册与登录: 2. 添加好友 3. 实时聊天 4. 消息未读 5. 删除聊天记录 6. 删除好友 未来展望: 项目地址: 结语&am…...

(el-Table)操作(不使用 ts):Element-plus 中Table 表格组件:多选修改成支持单选及表格相关样式的调整
Ⅰ、Element-plus 提供的 Table 表格组件与想要目标情况的对比: 1、Element-plus 提供 Table 组件情况: 其一、Element-ui 自提供的 Table 代码情况为(示例的代码): // Element-plus 自提供的代码: // 此时是使用了 ts 语言环境…...

【JAVA】变量的作用域与生存周期
个人主页:【😊个人主页】 系列专栏:【❤️初识JAVA】 文章目录 前言变量的作用域变量的生命周期局部变量全局变量 前言 变量,我们学习过程中逃不掉的知识,无论在哪种语言中我们都需要学会去合理的运用它,今…...

中科亿海微FIFO使用
引言 FPGA(现场可编程门阵列)是一种可编程逻辑器件,具有灵活性和可重构性,广泛用于数字电路设计和嵌入式系统开发。在FPGA中,FIFO(First-In, First-Out)是一种常见的存储器结构,用于…...