当前位置: 首页 > news >正文

神经网络基础-神经网络补充概念-09-m个样本的梯度下降

概念

当应用梯度下降算法到具有 m 个训练样本的逻辑回归问题时,我们需要对每个样本计算梯度并进行平均,从而更新模型参数。这个过程通常称为批量梯度下降(Batch Gradient Descent)。

代码实现

import numpy as npdef sigmoid(z):return 1 / (1 + np.exp(-z))def compute_loss(X, y, theta):m = len(y)h = sigmoid(X.dot(theta))loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))return lossdef batch_gradient_descent(X, y, theta, learning_rate, num_iterations):m = len(y)losses = []for _ in range(num_iterations):h = sigmoid(X.dot(theta))gradient = X.T.dot(h - y) / mtheta -= learning_rate * gradientloss = compute_loss(X, y, theta)losses.append(loss)return theta, losses# 生成一些模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0# 初始化参数和超参数
theta = np.zeros(X.shape[1])
learning_rate = 0.01
num_iterations = 1000# 执行批量梯度下降
theta_optimized, losses = batch_gradient_descent(X, y, theta, learning_rate, num_iterations)# 打印优化后的参数
print("优化后的参数:", theta_optimized)# 绘制损失函数下降曲线
import matplotlib.pyplot as plt
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.title('损失函数下降曲线')
plt.show()

使用了 m 个训练样本,而不是一个。我们首先定义了 sigmoid 函数和计算损失的函数 compute_loss,然后实现了 batch_gradient_descent 函数来执行批量梯度下降。

相关文章:

神经网络基础-神经网络补充概念-09-m个样本的梯度下降

概念 当应用梯度下降算法到具有 m 个训练样本的逻辑回归问题时,我们需要对每个样本计算梯度并进行平均,从而更新模型参数。这个过程通常称为批量梯度下降(Batch Gradient Descent)。 代码实现 import numpy as npdef sigmoid(z…...

分布式 - 消息队列Kafka:Kafka消费者分区再均衡(Rebalance)

文章目录 01. Kafka 消费者分区再均衡是什么?02. Kafka 消费者分区再均衡的触发条件?03. Kafka 消费者分区再均衡的过程?04. Kafka 如何判定消费者已经死亡?05. Kafka 如何避免消费者的分区再均衡?06. Kafka 消费者分区再均衡有什…...

BIO、NIO和AIO

一.引言 何为IO 涉及计算机核心(CPU和内存)与其他设备间数据迁移的过程,就是I/O。数据输入到计算机内存的过程即输入,反之输出到外部存储(比如数据库,文件,远程主机)的过程即输出。 I/O 描述了计算机系统…...

理解 Go 中的切片:append 操作的深入分析(篇1)

理解 Go 语言中 slice 的性质对于编程非常有益。下面,我将通过两个代码示例来解释切片在不同函数之间传递并执行 append 操作时的具体表现。 本篇为第 1 篇,当切片的容量 cap 充足时 第一份代码 slice1 的初始长度为 3,容量为 10 func main()…...

由于找不到mfc140u.dll,无法继续执行代码怎么修复?

当我在使用某个应用程序时遇到了mfc140u.dll缺失的错误提示时,我意识到这是由于该动态链接库文件丢失或损坏所引起的。mfc140u.dll是MFC的一部分,它包含了许多与用户界面、窗口管理、控件等相关的函数和类。这个文件通常用于支持使用MFC开发的应用程序的…...

【0.1】lubancat鲁班猫4刷入debian网络ping 域名不通问题

目录 1. 环境2. 操作步骤 1. 环境 lubancat4鲁班猫4 (4G0)不带emmc系统镜像lubancat-rk3588-debian11-gnome-20230807_update.img官方资料地址https://doc.embedfire.com/products/link/zh/latest/linux/ebf_lubancat.html 2. 操作步骤 从官网给的百度网盘下载linux系统全部…...

KafkaStream:基本使用

简介: kafkaStream:提供了对存储在kafka中的数据进行流式处理和分析的功能 特点: KafkasSream提供了一个非常简单轻量的Library,它可以非常方便的嵌入到java程序中,也可以任何方式打包部署 入门案例: 1、…...

【数据结构】二叉树

完全二叉树 是指所有结点度数小于等于2的树 所以这种情况也是: 几条性质 一个具有n个结点的完全二叉树的深度为: log ⁡ 2 ( n 1 ) 的结果向上取整。 \\\log_{2}(n1) \ \ 的结果向上取整。 log2​(n1) 的结果向上取整。设度为0的结点个数是n0&#…...

基于灰狼优化(GWO)、帝国竞争算法(ICA)和粒子群优化(PSO)对梯度下降法训练的神经网络的权值进行了改进(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

jenkins自动化构建保姆级教程(持续更新中)

1.安装 1.1版本说明 访问jenkins官网 https://www.jenkins.io/,进入到首页 点击【Download】按钮进入到jenkins下载界面 左侧显示的是最新的长期支持版本,右侧显示的是最新的可测试版本(可能不稳定),建议使用最新的…...

HTTPS 的加密流程

目录 一、HTTPS是什么? 二、为什么要加密 三、"加密" 是什么 四、HTTPS 的工作过程 1.对称加密 2.非对称加密 3.中间人攻击 4.证书 总结 一、HTTPS是什么? HTTPS (Hyper Text Transfer Protocol Secure) 是基于 HTTP 协议之上的安全协议&…...

Jmeter 参数化的几种方法

目录 配置元件-用户自定义变量 前置处理器-用户参数 配置元件-CSV Data Set Config Tools-函数助手 配置元件-用户自定义变量 可在测试计划、线程组、HTTP请求下创建用户定义的变量 全局变量,可以跨线程组调用 jmeter执行的时候,只获取一次&#xff0…...

剑指Offer45.把数组排成最小的数 C++

1、题目描述 输入一个非负整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。 示例 1: 输入: [10,2] 输出: “102” 示例 2: 输入: [3,30,34,5,9] 输出: “3033459” 2、VS2019上运行 先转换成字符串再组合起来 #in…...

【java毕业设计】基于SSM+MySql的人才公寓管理系统设计与实现(程序源码)--人才公寓管理系统

基于SSMMySql的人才公寓管理系统设计与实现(程序源码毕业论文) 大家好,今天给大家介绍基于SSMMySql的人才公寓管理系统设计与实现,本论文只截取部分文章重点,文章末尾附有本毕业设计完整源码及论文的获取方式。更多毕业…...

golang操作excel的高性能库——excelize/v2

目录 介绍文档与源码安装快速开始创建 Excel 文档读取 Excel 文档打开数据流流式写入 [相关 Excel 开源类库性能对比](https://xuri.me/excelize/zh-hans/performance.html) 介绍 Excelize是一个纯Go编写的库,提供了一组功能,允许你向XLAM / XLSM / XLS…...

学习51单片机怎么开始?

学习的过程不总是先打好基础,然后再盖上层建筑,尤其是实践性的、工程性很强的东西。如果你一定要先全面打好基础,再学习单片机,我觉得你一定学不好,因为你的基础永远打不好,因为基础太庞大了,基…...

[.NET学习笔记] -.NET6.0项目动态加载netstandard2.0报错但项目添加引用则正常的问题

问题描述 .NET6.0的项目使用netstandard2.0版本的动态链接库。若是在项目中直接添加引用,应用netstandard2.0项目或者netstandard2.0编译后的dll均能正常工作。但如果通过xcopy等方式,额外将对应的dll复制到执行目录,会执行失败。调用方式一…...

山景DSP芯片可烧录AP8224C2音频处理器方案

AP8224C2高性能32位音频应用处理器AP82系列音频处理器是面向音频应用领域设计的新一代SoC平台产品,适用于传统音响系统、新兴的蓝牙或Wifi 无线音频产品、Sound Bar 和调音台等市场。该处理器在总体架构和系统组成上,充分考虑了音频领域的特点&#xff0…...

来聊聊托管服务提供商(MSP)安全

纵观各个中小型企业,由于预算十分有限而且系统环境的满载,如今它们往往需要依赖托管服务提供商(managed service providers,MSP)来支持其IT服务与流程。而由于MSP提供的解决方案可以与客户端基础设施相集成&#xff0c…...

最新版本的Anaconda环境配置、Cuda、cuDNN以及pytorch环境一键式配置流程

本教程是最新的深度学习入门环境配置教程,跟着本教程可以帮你解决入门深度学习之前的环境配置问题。同时,本教程拒绝琐碎,大部分以图例形式进行教程。这里我们安装的都是最新版本~ 文章目录 一、Anaconda的安装1.1 下载1.2 安装1.3 环境配置…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...