当前位置: 首页 > news >正文

W5100S-EVB-PICO 做UDP Server进行数据回环测试(七)

 前言

        前面我们用W5100S-EVB-PICO 开发板在TCP Client和TCP Server模式下,分别进行数据回环测试,本章我们将用开发板在UDP Server模式下进行数据回环测试。

UDP是什么?什么是UDP Server?能干什么?

        UDP (User Dataqram Protocol) 是一种无连接的、不可靠的传输协议,用于在计算机网络上传输数据UDP Server是指UDP网络服务的服务器端连接,用于接收客户端的数据报文并返回响应,实现网络数据的交互。
        UDP Server的主要作用是接收客户端发送的数据报文,并进行处理和响应。通过UDP Server,客户端可以将数据报文发送到服务器,并从服务器接收响应。由于UDP是无连接的,因此每个数据报文都是独立处理的,服务器对于未收到的数据报文不会重传。
        在UDP Server中,服务器程序需要指定监听的端口号,并使用UDP协议接收客户端发送的数据报文。一旦接收到数据报文,服务器程序会对报文进行处理,并返回相应的响应报文。
        因此,UDP Server可以帮助设备实现数据报文的快速传输和响应,适用于一些对于数据传输速度和实时性要求较高的应用,如视频直播、语音通话等。在UDP Server中,由于数据报文的传输是不可靠的,因此需要客户端程序进行重传和超时处理,以保证数据的可靠传输。

UDP Server 和 UDP Client有何不同?

UDP服务器:

  • 首先初始化
  • 打开特定端口监听
  • 可以接受多个客户端连接

UDP客户端:

  • 指定目标IP和端口
  • 发送数据

从套接字编程角度来看,两者完全相同。因此我们仅用UDP Server来做数据回环测试。

连接方式

使开发板和我们的电脑处于同一网段:

  • 开发板通过交叉线直连主机
  • 开发板和主机都接在路由器LAN口

测试工具

  • 网路调试工具(任意)
  • wireshark抓包工具

回环测试

1.相关代码

我们打开例程中库文件的loopback.c文件,可以看到udp server回环测试函数,它有三个参数:socket(套接字)端口号(0~3个端口,可开4路socket)、数据收发缓存buf、监听端口;原理上依旧是通过Switch状态机轮询socket端口(所开端口的套接字)状态,根据不同状态做出相应处理,与tcp不同的是,udp只有做了两个状态处理,如果为关闭状态就初始化socket状态为udp协议模式,并开始监听设置的端口;如果状态已经处于udp模式,即socket初始化后,就进行判断是否收到数据,收到就进行回传。如下所示:

int32_t loopback_udps(uint8_t sn, uint8_t* buf, uint16_t port)
{int32_t  ret;uint16_t size, sentsize;uint8_t  destip[4];uint16_t destport;switch(getSn_SR(sn)){case SOCK_UDP :if((size = getSn_RX_RSR(sn)) > 0){if(size > DATA_BUF_SIZE) size = DATA_BUF_SIZE;ret = recvfrom(sn, buf, size, destip, (uint16_t*)&destport);buf[ret]=0x00;printf("recv form[%d.%d.%d.%d][%d]: %s\n", destip[0],destip[1],destip[2],destip[3],destport,buf);if(ret <= 0){
#ifdef _LOOPBACK_DEBUG_printf("%d: recvfrom error. %ld\r\n",sn,ret);
#endifreturn ret;}size = (uint16_t) ret;sentsize = 0;while(sentsize != size){ret = sendto(sn, buf+sentsize, size-sentsize, destip, destport);if(ret < 0){
#ifdef _LOOPBACK_DEBUG_printf("%d: sendto error. %ld\r\n",sn,ret);
#endifreturn ret;}sentsize += ret; // Don't care SOCKERR_BUSY, because it is zero.}}break;case SOCK_CLOSED:
#ifdef _LOOPBACK_DEBUG_//printf("%d:UDP loopback start\r\n",sn);
#endifif((ret = socket(sn, Sn_MR_UDP, port, 0x00)) != sn)return ret;
#ifdef _LOOPBACK_DEBUG_printf("%d:Opened, UDP loopback, port [%d]\r\n", sn, port);
#endifbreak;default :break;}return 1;
}

然后我们在主函数里循环调用测试函数即可。可以看到里面还注释了一个udp client回环测试函数,这个基本跟udp server相同,独立出来是为了方便用户自己进行测试,这里不在演示。如下所示:

#define SOCKET_ID 0
#define ETHERNET_BUF_MAX_SIZE (1024 * 2)void network_init(void);wiz_NetInfo net_info = {.mac = {0x00, 0x08, 0xdc, 0x16, 0xed, 0x2e},.ip = {192, 168, 1, 10},.sn = {255, 255, 255, 0},.gw = {192, 168, 1, 1},.dns = {8, 8, 8, 8},.dhcp = NETINFO_STATIC};
wiz_NetInfo get_info;
static uint8_t ethernet_buf[ETHERNET_BUF_MAX_SIZE] = {0,};
static uint8_t destip[4]={192, 168, 1, 2};
static uint16_t destport = 8080;
static uint16_t local_port =8000;
int main()                                                          
{   stdio_init_all();sleep_ms(2000);network_init();while(true){// loopback_udpc(SOCKET_ID, ethernet_buf, destip, destport);loopback_udps(SOCKET_ID, ethernet_buf, local_port);sleep_ms(500);}}void network_init(void)
{uint8_t temp;wizchip_initialize();printf("W5500 udp test example.\r\n");sleep_ms(2000);wizchip_setnetinfo(&net_info);print_network_information(get_info);sleep_ms(2000);   
}

2.测试现象

编译烧录后,打开串行监视器,看到网络信息配置成功后,打开两个网络调试助手,参数依次设置为UDP、本机的IP、8080,注意另一个调试助手的端口参数设置跟第一个不可以相同,避免冲突;这里将其设置为8081,完成后打开;然后远程IP和端口选择我们开发板设置的IP和端口,我这里是192.168.1.10 : 8000,然后我们让第一个调试助手发送0~9十个阿拉伯数字,第二个发送字符串:hello wiznet,可以看到串口打印收到不同客户端的数据,而且调试助手也分别收到了相对应的数据回传。如下图所示:

 我们可以打开wireshark抓包工具,输入命令<ip.addr == 192.168.1.10 and udp>过滤数据包(IP地址改成自己电脑的IP或者开发板的IP地址即可);然后两个调试助手依次发送,可以到抓到的数据包。如下图所示:

相关链接 

本章相关例程https://gitee.com/wiznet-hk/w5100s-evb-pico-routine.git

相关文章:

W5100S-EVB-PICO 做UDP Server进行数据回环测试(七)

前言 前面我们用W5100S-EVB-PICO 开发板在TCP Client和TCP Server模式下&#xff0c;分别进行数据回环测试&#xff0c;本章我们将用开发板在UDP Server模式下进行数据回环测试。 UDP是什么&#xff1f;什么是UDP Server&#xff1f;能干什么&#xff1f; UDP (User Dataqram …...

Redis如何处理内存溢出的情况?

当Redis的内存使用达到上限时&#xff0c;会出现内存溢出的情况。Redis提供了几种处理内存溢出的机制&#xff1a; 内存淘汰策略&#xff1a;Redis提供了多种内存淘汰策略&#xff0c;用于在内存不足时选择要移除的键。常见的淘汰策略包括&#xff1a; LRU&#xff08;Least Re…...

高效数据传输:轻松上手将Kafka实时数据接入CnosDB

本篇我们将主要介绍如何在 Ubuntu 22.04.2 LTS 环境下&#xff0c;实现一个KafkaTelegrafCnosDB 同步实时获取流数据并存储的方案。在本次操作中&#xff0c;CnosDB 版本是2.3.0&#xff0c;Kafka 版本是2.5.1&#xff0c;Telegraf 版本是1.27.1 随着越来越多的应用程序架构转…...

【探索Linux】—— 强大的命令行工具 P.3(Linux开发工具 vim)

阅读导航 前言vim简介概念特点 vim的相关指令vim命令模式(Normal mode)相关指令插入模式(Insert mode)相关指令末行模式(last line mode)相关指令 简单vim配置&#xff08;附配置链接&#xff09;温馨提示 前言 前面我们讲了C语言的基础知识&#xff0c;也了解了一些数据结构&…...

AgentBench::AI智能体发展的潜在问题一

从历史上看,几乎每一种新技术的广泛应用都会在带来新机遇的同时引发很多新问题,AI智能体也不例外。从目前的发展看,AI智能体的发展可能带来的新问题可能包括如下方面: 第一是它可能带来涉及个人数据、隐私,以及知识产权的法律纠纷的大幅增长。要产生一个优秀的AI智能体,除…...

【2023年11月第四版教材】《第5章-信息系统工程之软件工程(第二部分)》

《第5章-信息系统工程之软件工程&#xff08;第二部分&#xff09;》 1.3 软件设计1.4 软件实现&#xff3b;补充第三版教材内容&#xff3d; 1.5 部署交付 1.3 软件设计 1、结构化设计SD是一种面向数据流的方法&#xff0c;它以SRS和SA阶段所产生的DFD和数据字 典等文档为基础…...

OpenCV(二)——图像基本处理(二)

目录 2.图像的几何变换 2.1 图像平移 2.2 图像缩放 2.3 图像旋转 2.4 仿射变换 2.5 透视变换...

Redis—缓存

目录标题 缓存雪崩发生场景解决方案针对Redis宕机的缓存雪崩解决方案 缓存击穿发生场景解决方案 缓存穿透发生场景解决方案布隆过滤器 数据库和缓存数据一致性 缓存雪崩 大量缓存数据在同一时间过期&#xff08;失效&#xff09;或者 Redis 故障宕机时&#xff0c;如果此时有大…...

第三章 图论 No.10无向图的双连通分量

文章目录 定义Tarjan求e-DCCTarjan求v-DCC395. 冗余路径1183. 电力396. 矿场搭建 定义 无向图有两种双连通分量 边双连通分量&#xff0c;e-DCC点双连通分量&#xff0c;v-DCC 桥&#xff1a;删除这条无向边后&#xff0c;图变得不连通&#xff0c;这条边被称为桥 边双连通分…...

Java学习手册——第二篇面向对象程序设计

Java学习手册——第二篇面向对象 1. 结构化程序设计2. 面向对象 第一章我们已经介绍了Java语言的基础知识&#xff0c;也知道他能干什么了&#xff0c; 那我们就从他的设计思想开始入手吧。 接触一个语言之前首先要知道他的大方向&#xff0c;设计思想是什么样的&#xff0c; 这…...

Redis实战:Redis的安装及简单使用

本片将介绍 Redis 的安装及简单使用 文章目录 1、Redis安装1.1、Windows下Redis的安装1.2、Linux下Redis的安装1.3、Mac下Redis的安装&#xff08;使用Homebrew&#xff09; 2、Redis使用2.1、启动服务端客户端2.2、Redis简单命令 3、Redis命令大全 1、Redis安装 1.1、Windows…...

Linux学习之初识Linux

目录 一.Linux的发展历史及概念 1.什么是Linux UNIX发展的历史&#xff1a; Linux发展历史&#xff1a; 2. 开源 商业化发行版本 二. 如何搭建Linux环境 Linux 环境的搭建方式主要有三种&#xff1a; 1. 直接安装在物理机上 2. 使用虚拟机软件 3. 使用云服务器 三. …...

神经网络基础-神经网络补充概念-29-为什么使用深层表示

概念 深层表示&#xff08;Deep Representation&#xff09;是指在深度神经网络的多个隐藏层中逐层提取和学习数据的特征表示。 使用深层表示的原因 高维特征提取&#xff1a;深层神经网络可以从原始数据中自动学习高维抽象特征。每个隐藏层都对数据进行一些变换&#xff0c…...

2023最新水果编曲软件FL Studio 21.1.0.3267音频工作站电脑参考配置单及系统配置要求

音乐在人们心中的地位日益增高&#xff0c;近几年音乐选秀的节目更是层出不穷&#xff0c;喜爱音乐&#xff0c;创作音乐的朋友们也是越来越多&#xff0c;音乐的类型有很多&#xff0c;好比古典&#xff0c;流行&#xff0c;摇滚等等。对新手友好程度基本上在首位&#xff0c;…...

边缘计算:下一代计算模式的突破

章节一&#xff1a;引言 随着物联网、人工智能和大数据等技术的不断发展&#xff0c;计算需求变得越来越复杂&#xff0c;传统的云计算模式已经难以满足快速增长的数据处理需求。在这样的背景下&#xff0c;边缘计算作为一种全新的计算模式崭露头角&#xff0c;为我们带来了更加…...

连接不上手机,adb devices为空:

首先说明一下&#xff0c;我是已经安装了android studio,也配置了环境变量&#xff0c;但是还是连接不上手机 解决方案&#xff1a; 1.打开开发者模式 https://product.pconline.com.cn/itbk/sjtx/sjwt/1424/14246015.html 2.开启usb调试 https://baiyunju.cc/10770 最后成功…...

vuex学习总结

一、vuex工作原理 工作流程&#xff1a;需求&#xff1a;改变组件count的sun变量的值&#xff0c;先调用dispatch函数传入jia函数和要改变的值给actions&#xff08;这个actions里面必须有jia这个函数&#xff09;&#xff1b;actions收到后调用commit函数将jia方法和值传给mut…...

11. Docker Swarm(二)

1、前言 上一篇中我们利用Docker Swarm搭建了基础的集群环境。那么今天我们就来验证以下该集群的可用性。上一篇的示例中&#xff0c;我创建了3个实例副本&#xff0c;并且通过访问http://192.168.74.132:8080得到我们的页面。 2、验证高可用 1&#xff09;我们可以通过以下命…...

注册中心Eureka和Nacos,以及负载均衡Ribbon

1.初识微服务 1.1.什么是微服务 微服务&#xff0c;就是把服务拆分成为若干个服务&#xff0c;降低服务之间的耦合度&#xff0c;提供服务的独立性和灵活性。做到高内聚&#xff0c;低耦合。 1.2.单体架构和微服务架构的区别&#xff1a; 单体架构&#xff1a;简单方便&#…...

php+tcpdf生成pdf:中文乱码

亲测成功&#xff0c;感谢分享&#xff01; 查看原文 TCPDF是一个生成PDF的不错的库&#xff0c;可惜&#xff0c;官方对包括中文在内的东亚字体支持不怎么样的。 场景&#xff1a;某项目需要根据数据库信息生成pdf格式的发票&#xff0c;考虑采用稳定的tcpdf&#xff0c;虽然…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...