当前位置: 首页 > news >正文

VGG简单学习

VGG简单学习

简单介绍

  在AlexNet网络的基础上,为了设计深层神经网络,牛津大学设计了VGG网络,采用块的设计理念,将AlexNet中多个重复的卷积层和池化层组成一个块

 论文中,使用3x3卷积核,padding=1的卷积层 和带有2x2的汇聚窗口,步幅为2 的最大汇聚层

在这里插入图片描述

  • VGG使用可重复使用的卷积块来构建深度卷积神经网络
  • 不同的卷积块个数和超参数可以得到不同复杂度的变种

模型搭建与训练

 VGG神经网络连接几个VGG块由超参数变量conv_arch定义,该变量指定列每一个VGG块中卷积层的个数和输出通道数目,全连接模块和AlexNet中的相同。

  • 定义单个VGG块 Num_convs定义了层的数量 使用循环进行添加 一个卷积层 之后添加一个激活函数
import torch 
from torch import nn
from d2l import torch as d2l
# 参数分别对应:卷积层数量  输入通道数量 输出通道数量
def vgg_block(num_convs,in_channels,out_channels):layers = []for _ in range(num_convs):# 添加一个卷积层layers.append(nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=3,padding=1))# 添加激活函数layers.append(nn.ReLU())# 因为添加多个卷积层 上一层的输出通道 对应下一层的数通道in_channels = out_channels# 添加一个最大池化层layers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)

 原本的VGG网络由五个卷积块,其中前两个快有一个卷积层,后面三个快包含两个卷积层,第一个模块有64个输出通道,每一个后续模块将输出通道数量翻倍,直到该数字达到512,由于该网络使用八个卷积层和三个全连接层,该网络是用来八个卷积层和三个全连接层,因此称之为VGG-11

conv_arch = ((1,64),(1,128),(2,256),(2,512),(2,512))
  • 定义vgg网络
def vgg(conv_arch):conv_blks = []in_channels = 1  # 初始化输入通道数 在一个卷积层添加之后 需要更新输入通道数# 卷积层部分for(num_convs,out_channels) in conv_arch:# 遍历元组# 初始化VGG 块  然后添加进去conv_blks.append(vgg_block(num_convs=num_convs,in_channels=in_channels,out_channels=out_channels))# 更新输入通道数in_channels = out_channels# 全连接层  经过一系列卷积层之后 需要将4D向量 转换为2D向量return nn.Sequential(*conv_blks,nn.Flatten(),# 全练级曾部分nn.Linear(out_channels * 7 * 7,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,10))
  • 初始化 打印结构
net = vgg(conv_arch=conv_arch)X = torch.randn(size=(1,1,224,224))for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)

Sequential output shape:	 torch.Size([1, 64, 112, 112])
Sequential output shape:	 torch.Size([1, 128, 56, 56])
Sequential output shape:	 torch.Size([1, 256, 28, 28])
Sequential output shape:	 torch.Size([1, 512, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
Flatten output shape:	 torch.Size([1, 25088])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])
  • 训练网络
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

相关文章:

VGG简单学习

VGG简单学习 简单介绍 在AlexNet网络的基础上,为了设计深层神经网络,牛津大学设计了VGG网络,采用块的设计理念,将AlexNet中多个重复的卷积层和池化层组成一个块 论文中,使用3x3卷积核,padding1的卷积层 和带有2x2的汇…...

Stable Diffusion - 人物坐姿 (Sitting) 的提示词组合 与 LoRA 和 Embeddings 配置

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132201960 拍摄人物坐姿时,需要注意: 选择一个舒适和自然的坐姿,符合个性和心情。可以坐在椅子、沙发、长凳、…...

[oneAPI] 手写数字识别-GAN

[oneAPI] 手写数字识别-GAN 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolki…...

爬虫逆向实战(十五)--阿某某营登录

一、数据接口分析 主页地址:阿某某营 1、抓包 通过抓包可以发现登录接口是Users/Login 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现有一个s加密参数 请求头是否加密? 无响应是否加密? 无cookie是…...

【计组】校验码(奇偶校验码、海明校验码、CRC)

前言 1、小提示:本篇博文是参考王道,在复习 ASCII 码的基础上,总结校验码的相关学习知识点,并在最后搭配习题(含408真题)进行巩固练习。(对重点内容进行划线、标色) 2、适用人群&…...

File Inclusion

File Inclusion 服务器执行PHP文件时,可以通过文件包含函数加载另一个文件中的PHP代码,并且当PHP来执行,这会为开发者节省大量的时间。这意味着您可以创建供所有网页引用的标准页眉或菜单文件。当页眉需要更新时,您只更新一个包含…...

函数性能探测:更简单高效的 Serverless 规格选型方案

作者:拂衣、丛霄 2019 年 Berkeley 预测 Serverless 将取代 Serverful 计算成为云计算新范式。Serverless 为应用开发提供了一种全新系统架构。借助 2023 年由 OpenAI 所带来的 AIGC 风潮,以阿里云函数计算 FC、AWS Lambda 为代表的 Serverless 以其更高…...

嵌入式Linux Qt5 (C++)开发栏目概述

本栏目开始介绍Linux系统下的Qt C程序开发,资源是以嵌入式为切入点(现在Linux系统下的Qt C程序开发好像就是应用于嵌入式),那就跟着一起学习Linux系统下的Qt C程序开发知识,再扩展一下嵌入式的知识吧。我这里默认已经熟…...

C语言“牵手”微店商品详情数据方法,微店商品详情API接口申请指南

微店平台的商品详情通常包括以下信息: 商品名称:展示商品的名称,用于描述商品的特性和分类。 商品图片:展示商品的图片,可以有多张图片以展示不同角度和细节。 商品价格:显示商品的销售价格,可…...

C++ volatile

volatile 一、volatile 使用场景 volatile 是 C 和 C 中的一个关键字,用于告诉编译器不要对标记为 volatile 的变量进行优化,以确保每次访问都从内存中读取变量的最新值。主要用于以下情况: 硬件寄存器和内存映射设备:在访问硬…...

空洞卷积学习笔记

文章目录 1. 扩张卷积的提出2. 理解的难点 本片博客的主题思路来自于这篇文章——如何理解Dilated Convolutions(空洞卷积),但是作者似乎是很久之前写的,文字的排版很混乱,自己来写一个新的。 1. 扩张卷积的提出 Multi-Scale Context Aggre…...

WPF中的UseLayoutRounding和SnapsToDevicePixels

WPF中的UseLayoutRounding和SnapsToDevicePixels 最近在调试项目中的UI时发现几个诡异问题: Grid容器里的GridSplitter设置粗细一样, 但截屏放大后发现线条不一样粗并且明暗不一致,导致打印出来有问题。 自定义控件的边缘在某些窗体中显示模…...

Windows权限维持—自启动映像劫持粘滞键辅助屏保后门WinLogon

Windows权限维持—自启动&映像劫持&粘滞键&辅助屏保后门&WinLogon 1. 前置2. 自启动2.1. 路径加载2.1.1. 放置文件2.1.2. 重启主机 2.2. 服务加载2.2.1. 创建服务2.2.2. 查看服务2.2.3. 重启主机 2.3. 注册表加载2.3.1. 添加启动项2.3.2. 查看注册表2.3.3. 重启…...

Mysql之explain详解

1. explain作用 使用explain可以展示出sql语句的执行计划,再根据sql的执行计划去判断这条sql有哪些点可以进行优化,从而让sql的效率达到最大化。 2. 执行计划各列含义 (1)id:id列是select的序列号,这个…...

每天一道leetcode:1926. 迷宫中离入口最近的出口(图论中等广度优先遍历)

今日份题目: 给你一个 m x n 的迷宫矩阵 maze (下标从 0 开始),矩阵中有空格子(用 . 表示)和墙(用 表示)。同时给你迷宫的入口 entrance ,用 entrance [entrancerow, …...

Mysql_5.7下载安装与配置基础操作教程

目录 一、Mysql57下载与安装 二、尝试登录Mysql 三、配置Mysql环境变量 一、Mysql57下载与安装 首先,进入Mysql下载官网:MySQL Community Downloads 随后,选择版本5.7.43,系统选择Windows,随后下方会出现两个下载选…...

【业务功能篇68】电商项目相关核心设计

https证书 http 超文本传输协议: 超文本:包括:文字,图片,音频,视频等。 传输:客户端向服务端发东西,服务端向客户端发东西。 协议:三方协议。怎么传,错误…...

微信开发之一键退出群聊的技术实现

简要描述: 退出群聊 请求URL: http://域名地址/quitChatRoom 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选类型说明wI…...

〔012〕Stable Diffusion 之 中文提示词自动翻译插件 篇

✨ 目录 🎈 翻译插件🎈 下载谷歌翻译🎈 谷歌翻译使用方法🎈 谷歌翻译使用效果 🎈 翻译插件 在插件列表中搜索 Prompt Translator可以看到有2个插件选项:一个是基于谷歌翻译 〔推荐〕、一个基于百度和deepl…...

【C++】一文带你初识C++继承

食用指南:本文在有C基础的情况下食用更佳 🍀本文前置知识: C类 ♈️今日夜电波:napori—Vaundy 1:21 ━━━━━━️💟──────── 3:23 …...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

2025季度云服务器排行榜

在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...