VGG简单学习
VGG简单学习
简单介绍
在AlexNet网络的基础上,为了设计深层神经网络,牛津大学设计了VGG网络,采用块的设计理念,将AlexNet中多个重复的卷积层和池化层组成一个块
论文中,使用3x3卷积核,padding=1的卷积层 和带有2x2的汇聚窗口,步幅为2 的最大汇聚层

- VGG使用可重复使用的卷积块来构建深度卷积神经网络
- 不同的卷积块个数和超参数可以得到不同复杂度的变种
模型搭建与训练
VGG神经网络连接几个VGG块由超参数变量conv_arch定义,该变量指定列每一个VGG块中卷积层的个数和输出通道数目,全连接模块和AlexNet中的相同。
- 定义单个VGG块 Num_convs定义了层的数量 使用循环进行添加 一个卷积层 之后添加一个激活函数
import torch
from torch import nn
from d2l import torch as d2l
# 参数分别对应:卷积层数量 输入通道数量 输出通道数量
def vgg_block(num_convs,in_channels,out_channels):layers = []for _ in range(num_convs):# 添加一个卷积层layers.append(nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=3,padding=1))# 添加激活函数layers.append(nn.ReLU())# 因为添加多个卷积层 上一层的输出通道 对应下一层的数通道in_channels = out_channels# 添加一个最大池化层layers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)
原本的VGG网络由五个卷积块,其中前两个快有一个卷积层,后面三个快包含两个卷积层,第一个模块有64个输出通道,每一个后续模块将输出通道数量翻倍,直到该数字达到512,由于该网络使用八个卷积层和三个全连接层,该网络是用来八个卷积层和三个全连接层,因此称之为VGG-11
conv_arch = ((1,64),(1,128),(2,256),(2,512),(2,512))
- 定义vgg网络
def vgg(conv_arch):conv_blks = []in_channels = 1 # 初始化输入通道数 在一个卷积层添加之后 需要更新输入通道数# 卷积层部分for(num_convs,out_channels) in conv_arch:# 遍历元组# 初始化VGG 块 然后添加进去conv_blks.append(vgg_block(num_convs=num_convs,in_channels=in_channels,out_channels=out_channels))# 更新输入通道数in_channels = out_channels# 全连接层 经过一系列卷积层之后 需要将4D向量 转换为2D向量return nn.Sequential(*conv_blks,nn.Flatten(),# 全练级曾部分nn.Linear(out_channels * 7 * 7,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,10))
- 初始化 打印结构
net = vgg(conv_arch=conv_arch)X = torch.randn(size=(1,1,224,224))for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape: torch.Size([1, 64, 112, 112])
Sequential output shape: torch.Size([1, 128, 56, 56])
Sequential output shape: torch.Size([1, 256, 28, 28])
Sequential output shape: torch.Size([1, 512, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
Flatten output shape: torch.Size([1, 25088])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])
- 训练网络
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())相关文章:
VGG简单学习
VGG简单学习 简单介绍 在AlexNet网络的基础上,为了设计深层神经网络,牛津大学设计了VGG网络,采用块的设计理念,将AlexNet中多个重复的卷积层和池化层组成一个块 论文中,使用3x3卷积核,padding1的卷积层 和带有2x2的汇…...
Stable Diffusion - 人物坐姿 (Sitting) 的提示词组合 与 LoRA 和 Embeddings 配置
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132201960 拍摄人物坐姿时,需要注意: 选择一个舒适和自然的坐姿,符合个性和心情。可以坐在椅子、沙发、长凳、…...
[oneAPI] 手写数字识别-GAN
[oneAPI] 手写数字识别-GAN 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolki…...
爬虫逆向实战(十五)--阿某某营登录
一、数据接口分析 主页地址:阿某某营 1、抓包 通过抓包可以发现登录接口是Users/Login 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现有一个s加密参数 请求头是否加密? 无响应是否加密? 无cookie是…...
【计组】校验码(奇偶校验码、海明校验码、CRC)
前言 1、小提示:本篇博文是参考王道,在复习 ASCII 码的基础上,总结校验码的相关学习知识点,并在最后搭配习题(含408真题)进行巩固练习。(对重点内容进行划线、标色) 2、适用人群&…...
File Inclusion
File Inclusion 服务器执行PHP文件时,可以通过文件包含函数加载另一个文件中的PHP代码,并且当PHP来执行,这会为开发者节省大量的时间。这意味着您可以创建供所有网页引用的标准页眉或菜单文件。当页眉需要更新时,您只更新一个包含…...
函数性能探测:更简单高效的 Serverless 规格选型方案
作者:拂衣、丛霄 2019 年 Berkeley 预测 Serverless 将取代 Serverful 计算成为云计算新范式。Serverless 为应用开发提供了一种全新系统架构。借助 2023 年由 OpenAI 所带来的 AIGC 风潮,以阿里云函数计算 FC、AWS Lambda 为代表的 Serverless 以其更高…...
嵌入式Linux Qt5 (C++)开发栏目概述
本栏目开始介绍Linux系统下的Qt C程序开发,资源是以嵌入式为切入点(现在Linux系统下的Qt C程序开发好像就是应用于嵌入式),那就跟着一起学习Linux系统下的Qt C程序开发知识,再扩展一下嵌入式的知识吧。我这里默认已经熟…...
C语言“牵手”微店商品详情数据方法,微店商品详情API接口申请指南
微店平台的商品详情通常包括以下信息: 商品名称:展示商品的名称,用于描述商品的特性和分类。 商品图片:展示商品的图片,可以有多张图片以展示不同角度和细节。 商品价格:显示商品的销售价格,可…...
C++ volatile
volatile 一、volatile 使用场景 volatile 是 C 和 C 中的一个关键字,用于告诉编译器不要对标记为 volatile 的变量进行优化,以确保每次访问都从内存中读取变量的最新值。主要用于以下情况: 硬件寄存器和内存映射设备:在访问硬…...
空洞卷积学习笔记
文章目录 1. 扩张卷积的提出2. 理解的难点 本片博客的主题思路来自于这篇文章——如何理解Dilated Convolutions(空洞卷积),但是作者似乎是很久之前写的,文字的排版很混乱,自己来写一个新的。 1. 扩张卷积的提出 Multi-Scale Context Aggre…...
WPF中的UseLayoutRounding和SnapsToDevicePixels
WPF中的UseLayoutRounding和SnapsToDevicePixels 最近在调试项目中的UI时发现几个诡异问题: Grid容器里的GridSplitter设置粗细一样, 但截屏放大后发现线条不一样粗并且明暗不一致,导致打印出来有问题。 自定义控件的边缘在某些窗体中显示模…...
Windows权限维持—自启动映像劫持粘滞键辅助屏保后门WinLogon
Windows权限维持—自启动&映像劫持&粘滞键&辅助屏保后门&WinLogon 1. 前置2. 自启动2.1. 路径加载2.1.1. 放置文件2.1.2. 重启主机 2.2. 服务加载2.2.1. 创建服务2.2.2. 查看服务2.2.3. 重启主机 2.3. 注册表加载2.3.1. 添加启动项2.3.2. 查看注册表2.3.3. 重启…...
Mysql之explain详解
1. explain作用 使用explain可以展示出sql语句的执行计划,再根据sql的执行计划去判断这条sql有哪些点可以进行优化,从而让sql的效率达到最大化。 2. 执行计划各列含义 (1)id:id列是select的序列号,这个…...
每天一道leetcode:1926. 迷宫中离入口最近的出口(图论中等广度优先遍历)
今日份题目: 给你一个 m x n 的迷宫矩阵 maze (下标从 0 开始),矩阵中有空格子(用 . 表示)和墙(用 表示)。同时给你迷宫的入口 entrance ,用 entrance [entrancerow, …...
Mysql_5.7下载安装与配置基础操作教程
目录 一、Mysql57下载与安装 二、尝试登录Mysql 三、配置Mysql环境变量 一、Mysql57下载与安装 首先,进入Mysql下载官网:MySQL Community Downloads 随后,选择版本5.7.43,系统选择Windows,随后下方会出现两个下载选…...
【业务功能篇68】电商项目相关核心设计
https证书 http 超文本传输协议: 超文本:包括:文字,图片,音频,视频等。 传输:客户端向服务端发东西,服务端向客户端发东西。 协议:三方协议。怎么传,错误…...
微信开发之一键退出群聊的技术实现
简要描述: 退出群聊 请求URL: http://域名地址/quitChatRoom 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选类型说明wI…...
〔012〕Stable Diffusion 之 中文提示词自动翻译插件 篇
✨ 目录 🎈 翻译插件🎈 下载谷歌翻译🎈 谷歌翻译使用方法🎈 谷歌翻译使用效果 🎈 翻译插件 在插件列表中搜索 Prompt Translator可以看到有2个插件选项:一个是基于谷歌翻译 〔推荐〕、一个基于百度和deepl…...
【C++】一文带你初识C++继承
食用指南:本文在有C基础的情况下食用更佳 🍀本文前置知识: C类 ♈️今日夜电波:napori—Vaundy 1:21 ━━━━━━️💟──────── 3:23 …...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
Canal环境搭建并实现和ES数据同步
作者:田超凡 日期:2025年6月7日 Canal安装,启动端口11111、8082: 安装canal-deployer服务端: https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...
