centOS 快速安装和配置 NVIDIA docker Container Toolkit
要在 CentOS 上正确安装和配置 NVIDIA Container Toolkit,您可以按照以下步骤进行操作,如果1和2都已经完成,可以直接进行第3步NVIDIA Container Toolkit安装配置。
1. 安装 NVIDIA GPU 驱动程序:
您可以从 NVIDIA 官方网站下载适用于您的 GPU 型号和 CentOS 版本的驱动程序,并按照安装指南进行安装。确保您的系统已正确安装并配置了 NVIDIA GPU 驱动程序。
也可参考之前写的
在线安装:
https://blog.csdn.net/holyvslin/article/details/132299184
下载安装:
https://blog.csdn.net/holyvslin/article/details/132143104
2. 安装 Docker CE:
2.1 删除旧版本的 Docker(如果存在):
sudo yum remove -y docker docker-common docker-selinux docker-engine
2.2 安装必要的软件包:
sudo yum install -y yum-utils device-mapper-persistent-data lvm2
2.3 添加 Docker CE 存储库:
sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
2.4 安装 Docker CE:
sudo yum install -y docker-ce
2.5 启动 Docker 服务:
sudo systemctl start docker
2.6 设置 Docker 开机自启:
sudo systemctl enable docker
3. 安装 NVIDIA Container Toolkit:
3.1 添加 NVIDIA Container Toolkit 存储库密钥:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo
安装过程:
[xxx]# distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
[xxx]# curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo
[libnvidia-container]
name=libnvidia-container
baseurl=https://nvidia.github.io/libnvidia-container/stable/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[libnvidia-container-experimental]
name=libnvidia-container-experimental
baseurl=https://nvidia.github.io/libnvidia-container/experimental/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=0
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[nvidia-container-runtime]
name=nvidia-container-runtime
baseurl=https://nvidia.github.io/nvidia-container-runtime/stable/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/nvidia-container-runtime/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[nvidia-container-runtime-experimental]
name=nvidia-container-runtime-experimental
baseurl=https://nvidia.github.io/nvidia-container-runtime/experimental/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=0
gpgkey=https://nvidia.github.io/nvidia-container-runtime/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[nvidia-docker]
name=nvidia-docker
baseurl=https://nvidia.github.io/nvidia-docker/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/nvidia-docker/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
3.2 安装 NVIDIA Container Toolkit:
sudo yum install -y nvidia-docker2
安装过程
[ xxx ]# yum install -y nvidia-docker2
Loaded plugins: fastestmirror, langpacks, nvidia
Loading mirror speeds from cached hostfile
epel/x86_64/metalink | 14 kB 00:00:00base | 3.6 kB 00:00:00
centos-sclo-rh | 3.0 kB 00:00:00
centos-sclo-sclo | 3.0 kB 00:00:00
cuda-rhel7-x86_64 | 3.0 kB 00:00:00
docker-ce-stable | 3.5 kB 00:00:00
epel | 4.7 kB 00:00:00
extras | 2.9 kB 00:00:00
libnvidia-container/x86_64/signature | 833 B 00:00:00
Retrieving key from https://nvidia.github.io/libnvidia-container/gpgkey
Importing GPG key 0xF796ECB0:Userid : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From : https://nvidia.github.io/libnvidia-container/gpgkey
libnvidia-container/x86_64/signature | 2.1 kB 00:00:00 !!!
nvidia-container-runtime/x86_64/signature | 833 B 00:00:00
Retrieving key from https://nvidia.github.io/nvidia-container-runtime/gpgkey
Importing GPG key 0xF796ECB0:Userid : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From : https://nvidia.github.io/nvidia-container-runtime/gpgkey
nvidia-container-runtime/x86_64/signature | 2.1 kB 00:00:00 !!!
nvidia-docker/x86_64/signature | 833 B 00:00:00
Retrieving key from https://nvidia.github.io/nvidia-docker/gpgkey
Importing GPG key 0xF796ECB0:Userid : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From : https://nvidia.github.io/nvidia-docker/gpgkey
nvidia-docker/x86_64/signature | 2.1 kB 00:00:00 !!!
updates | 2.9 kB 00:00:00
(1/6): nvidia-docker/x86_64/primary | 8.0 kB 00:00:01
(2/6): epel/x86_64/updateinfo | 1.0 MB 00:00:01
(3/6): nvidia-container-runtime/x86_64/primary | 11 kB 00:00:01
(4/6): libnvidia-container/x86_64/primary | 35 kB 00:00:01
(5/6): epel/x86_64/primary_db | 7.0 MB 00:00:04
(6/6): updates/7/x86_64/primary_db | 22 MB 00:00:10
libnvidia-container 231/231
nvidia-container-runtime 71/71
nvidia-docker 54/54
Resolving Dependencies
--> Running transaction check
---> Package nvidia-docker2.noarch 0:2.13.0-1 will be installed
--> Processing Dependency: nvidia-container-toolkit >= 1.13.0-1 for package: nvidia-docker2-2.13.0-1.noarch
--> Running transaction check
---> Package nvidia-container-toolkit.x86_64 0:1.13.5-1 will be installed
--> Processing Dependency: nvidia-container-toolkit-base = 1.13.5-1 for package: nvidia-container-toolkit-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container-tools < 2.0.0 for package: nvidia-container-toolkit-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container-tools >= 1.13.5-1 for package: nvidia-container-toolkit-1.13.5-1.x86_64
--> Running transaction check
---> Package libnvidia-container-tools.x86_64 0:1.13.5-1 will be installed
--> Processing Dependency: libnvidia-container1(x86-64) >= 1.13.5-1 for package: libnvidia-container-tools-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container.so.1(NVC_1.0)(64bit) for package: libnvidia-container-tools-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container.so.1()(64bit) for package: libnvidia-container-tools-1.13.5-1.x86_64
---> Package nvidia-container-toolkit-base.x86_64 0:1.13.5-1 will be installed
--> Running transaction check
---> Package libnvidia-container1.x86_64 0:1.13.5-1 will be installed
--> Finished Dependency ResolutionDependencies Resolved====================================================================================================================================================================Package Arch Version Repository Size
====================================================================================================================================================================
Installing:nvidia-docker2 noarch 2.13.0-1 libnvidia-container 8.7 k
Installing for dependencies:libnvidia-container-tools x86_64 1.13.5-1 libnvidia-container 52 klibnvidia-container1 x86_64 1.13.5-1 libnvidia-container 1.0 Mnvidia-container-toolkit x86_64 1.13.5-1 libnvidia-container 909 knvidia-container-toolkit-base x86_64 1.13.5-1 libnvidia-container 3.1 MTransaction Summary
====================================================================================================================================================================
Install 1 Package (+4 Dependent packages)Total download size: 5.1 M
Installed size: 15 M
Downloading packages:
(1/5): libnvidia-container-tools-1.13.5-1.x86_64.rpm | 52 kB 00:00:01
(2/5): libnvidia-container1-1.13.5-1.x86_64.rpm | 1.0 MB 00:00:01
(3/5): nvidia-container-toolkit-1.13.5-1.x86_64.rpm | 909 kB 00:00:01
(4/5): nvidia-docker2-2.13.0-1.noarch.rpm | 8.7 kB 00:00:00
(5/5): nvidia-container-toolkit-base-1.13.5-1.x86_64.rpm | 3.1 MB 00:00:02
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total 1.1 MB/s | 5.1 MB 00:00:04
Running transaction check
Running transaction test
Transaction test succeeded
Running transactionInstalling : libnvidia-container1-1.13.5-1.x86_64 1/5Installing : libnvidia-container-tools-1.13.5-1.x86_64 2/5Installing : nvidia-container-toolkit-base-1.13.5-1.x86_64 3/5Installing : nvidia-container-toolkit-1.13.5-1.x86_64 4/5Installing : nvidia-docker2-2.13.0-1.noarch 5/5
warning: /etc/docker/daemon.json saved as /etc/docker/daemon.json.rpmorigVerifying : nvidia-container-toolkit-base-1.13.5-1.x86_64 1/5Verifying : libnvidia-container-tools-1.13.5-1.x86_64 2/5Verifying : nvidia-docker2-2.13.0-1.noarch 3/5Verifying : libnvidia-container1-1.13.5-1.x86_64 4/5Verifying : nvidia-container-toolkit-1.13.5-1.x86_64 5/5Installed:nvidia-docker2.noarch 0:2.13.0-1Dependency Installed:libnvidia-container-tools.x86_64 0:1.13.5-1 libnvidia-container1.x86_64 0:1.13.5-1 nvidia-container-toolkit.x86_64 0:1.13.5-1nvidia-container-toolkit-base.x86_64 0:1.13.5-1Complete!
4. 配置 Docker:
4.1 创建或编辑 Docker 配置文件 /etc/docker/daemon.json
sudo nano /etc/docker/daemon.json
4.2 添加以下内容到文件中:
{"default-runtime": "nvidia","runtimes": {"nvidia": {"path": "nvidia-container-runtime","runtimeArgs": []}}
}
4.3 保存并关闭文件。
5. 重启 Docker 服务:
sudo systemctl restart docker
完成上述步骤后,您的 CentOS 系统将具备 NVIDIA Container Toolkit 的安装和配置。您可以使用带有 GPU 功能的 Docker 容器,并确保容器正确地使用 GPU 资源。
请注意,上述步骤适用于 CentOS 7 及更高版本。如果您使用的是其他版本的 CentOS,请参考 NVIDIA Container Toolkit 官方文档中针对您的 CentOS 版本的安装和配置指南。
6. NVIDIA Container Toolkit 的官方文档链接:
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/index.html
相关文章:

centOS 快速安装和配置 NVIDIA docker Container Toolkit
要在 CentOS 上正确安装和配置 NVIDIA Container Toolkit,您可以按照以下步骤进行操作,如果1和2都已经完成,可以直接进行第3步NVIDIA Container Toolkit安装配置。 1. 安装 NVIDIA GPU 驱动程序: 您可以从 NVIDIA 官方网站下载适…...

编程练习(2)
一.选择题 第一题: 考察转义字符和strlen函数求解字符串长度 进一步在VS中可以智能看出哪些字符是转义字符: 因此本体答案选择B 第二题: 本体较为简单,宏定义了三个数N,M,NUM,N值为2,M值为3,因此NUM值为8,…...

利用Figlet工具创建酷炫Linux Centos8服务器-登录欢迎界面-SHELL自动化编译安装代码
因为我们需要生成需要的特定字符,所以需要在当前服务器中安装Figlet,默认没有安装包的,其实如果我们也只要在一台环境中安装,然后需要什么字符只要复制到需要的服务器中,并不需要所有都安装。同样的,我们也可以利用此生成的字符用到脚本运行的开始起头部分,用ECHO分行标…...

Git Cherry-pick使用
概述 无论项目大小,当你和一群程序员一起工作时,处理多个 Git 分支之间的变更都会变得很困难。有时,与其把整个 Git 分支合并到另一个分支,不如选择并移动几个特定的提交。这个过程被称为 "挑拣", 即 Cherry-pick。 本…...

红帽8.5 ansible 安装和部署 |(简单版)
什么是ansible Ansible是一款基于OpenSSH开源的自动化运维工具,可以用它来配置系统、部署软件和编排更高级的 IT 任务,并且使用具有极高的安全性,ansible是当前市面上主流的自动化运维工具之一 为什么使用ansible 比较直观的说,…...

Visual Studio 2019 c++ 自定义注释 ----doxygen
可加入C 也可自定义。 <?xml version"1.0" encoding"utf-8"?> <CodeSnippets xmlns"http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet"><CodeSnippet Format"1.0.0"><Header><Title>注释…...

面试题. 零矩阵
编写一种算法,若M N矩阵中某个元素为0,则将其所在的行与列清零。 示例 1: 输入: [[1,1,1],[1,0,1],[1,1,1] ] 输出: [[1,0,1],[0,0,0],[1,0,1] ] 示例 2: 输入: [[0,1,2,0],[3,4,5,2],[1,3…...

易语言下载器
静态网站整站下载器 https://bbs.125.la/forum.php?modviewthread&tid14791313&highlight%E4%B8%8B%E8%BD%BD%E5%99%A8 易语言 之音乐下载器 https://blog.51cto.com/u_15309652/3153642 (File Download Assistant)下载链接:https…...

原生js获取今天、昨天、近7天的时间(年月日时分秒)
有的时候我们需要将今天,昨天,近7天的时间(年月日时分秒)作为参数传递给后端,如下图: 那怎么生成这些时间呢?如下代码里,在methods里的toDay方法、yesterDay方法、weekDay方法分别用于生成今天、昨天和近7天的时间: <template><div class="box"&…...

最强自动化测试框架Playwright(29)-文件选择对象
FileChooser对象通过page.on("filechoose")事件监听。 如下代码实现点击百度搜图按钮,上传文件进行搜索。 from playwright.sync_api import Playwright, sync_playwright, expectdef run(playwright: Playwright) -> None:browser playwright.chro…...

【烂尾】K8S部署
0x01 初见K8S 在地下城的迷宫深处,有一个神奇的存在,它就是Kubernetes!宛如一个勇敢的冒险者,它穿越着这个复杂的迷宫,带领着容器们战胜各种惊险的挑战。 Kubernetes就像是一位无所畏惧的剑士,手握着强大…...

电机故障诊断(python程序,模型为MSCNN结合LSTM结合注意力机制模型,有注释)
代码运行环境要求:TensorFlow版本>2.4.0,python版本>3.6.0 1.电机常见的故障类型有以下几种: 轴承故障:轴承是电机运转时最容易受损的部件之一。常见故障包括磨损、疲劳、过热和润滑不良,这些问题可能导致噪音增…...

二叉树(ACM版)
【数据结构1-2】二叉树 - 题单 - 洛谷 【数据结构】day2-树_J娇娇_的博客-CSDN博客 上学时的作业 P1827 [USACO3.4] 美国血统 American Heritage 二叉树特点写法(非二叉树) 截取字符串写法 #include<string> #include<cstring> #include…...

Scratch 之 如何制作鼠标框(2)—— 鼠标框框定角色
hello,大家好,欢迎来到鼠标框系列的第二课时! 咱们废话不多说,直接开始 首先,温故知新一下,上个教程我们讨论了如何绘制鼠标框,网址:绘制鼠标框 你说,一个鼠标框&…...

爬虫逆向实战(九)--猿人学第十三题
一、数据接口分析 主页地址:猿人学第十三题 1、抓包 通过抓包可以发现数据接口是api/match/13 2、判断是否有加密参数 请求参数是否加密? 无请求头是否加密? 无响应是否加密? 无cookie是否加密? 在“cookie”模块…...

NeuralNLP-NeuralClassifier的使用记录(一),训练预测自己的【英文文本多分类】
NeuralNLP-NeuralClassifier的使用记录,训练预测自己的英文文本多分类 NeuralNLP-NeuralClassifier是腾讯开发的一个多层多分类应用工具,支持的任务包括,文本分类中的二分类、多分类、多标签,以及层次多标签分类。支持的文本编码…...

Pycharm社区版连接WSL2中的Mysql8.*
当前时间2023.08.13,Windows11中默认的WSL版本已经是2了,在WSL2中默认的Ubuntu版本已经是22.04,而Ubuntu22.04中默认的Mysql版本已经是8.*。 Wsl 2 中安装mysql WSL2中安装Mysql的方法参考自微软官方文档【开始使用适用于 Linux 的 Windows …...

前端传递参数时,form-data 和 json 的区别
在传递参数时,form-data 和 JSON 是两种常见的数据格式。 form-data 是一种多部分表单数据格式,通常用于上传文件或包含二进制数据的表单提交。它使用 multipart/form-data 格式来编码数据。在使用 form-data 格式时,数据会被分割成多个部分&…...

FairyGUI-Unity侧菜单扩展
目录 缘由: 分析: 准备: 完整代码: 缘由: 在使用FairyGUI作为项目UI开发时,有时会使用FairyGUI提供的Scripting Define Symbols。当前FairyGUI中的Scripting Define Symbols有: 骨骼动画 …...

学习笔记十八:污点、容忍度
污点、容忍度 污点、容忍度管理节点污点把k8snode2当成是生产环境专用的,其他node是测试的给k8snode1也打上污点 污点、容忍度 给了节点选则的主动权,我们给节点打一个污点,不容忍的pod就运行不上来,污点就是定义在节点上的键值属…...

amis百度前端框架,在js中使用amis写json转页面
amis百度前端框架,在js中使用用amis写的json页面 1.在项目中使用百度 amis 的sdk做开发库。 <script src="./sdk/sdk/sdk.js"></script> 2。加载sdk中的库: amis = amisRequire(amis/embed);amisLib = amisRequire(amis);const match = amisRequire…...

openEuler安装jdk、openEuler离线安装jdk、openEuler设置jdk、openEuler在线安装
记录一下本人使用openEuler安装jdk的过程,希望能帮到看到帖子的你! 方式一:在线安装: 在 openEuler 上安装 JDK(Java Development Kit)的步骤如下: 更新系统: 在安装 JDK 之前,建议先更新系统软件包。打开终端并执行以下命令: sudo dnf update 这将更新系统中的软…...

Photoshop制作漂亮光泽感3D按钮
原文链接(https://img-blog.csdnimg.cn/45472c07f29944458570b59fe1f9a0e0.png)...

【网络爬虫】模拟登录与代理
代理...

无线局域网基础知识与架构
1.1 无线局域网 无线局域网(Wireless Local Area Network,WLAN)是指以无线信道作为传输 媒介的计算机局域网络,是计算机网络与无线通信技术相结合的产物,它以无线多 址信道作为传输媒介,提供传统有线局域网的功能,能…...

uniapp tabbar 浏览器调试显示 真机不显示
解决方案,把tabBar里面的单位全改为px,rpx是不会显示的! 注意了,改完一定要重新运行,不然无效,坑爹 "tabBar": {"borderStyle": "black","selectedColor": &quo…...

极智AI | 地平线BPU跑通YOLOv5
欢迎关注我的公众号 [极智视界],获取我的更多经验分享 大家好,我是极智视界,本文来介绍一下 地平线BPU跑通YOLOv5。 邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDq 硬件设备为地平线旭日x3,开发环境和执行环…...

循环服务器(同时连接多个客户端,为每个客户端创建一个子进程处理其消息)
服务器 客户端 结果...

【从零学习python 】38.Python包的使用及导入方式
文章目录 包的使用1. 导入包的方式总结2. __init__.py文件有什么用3. __all__ 注意事项进阶案例 包的使用 一个模块就是一个 py 文件,在 Python 里为了对模块分类管理,就需要划分不同的文件夹。多个有联系的模块可以将其放到同一个文件夹下,为…...

docker 容器满了常用处理方法
docker 容器满了常用处理方法 1、运行 df -h 查看剩余磁盘占用情况 2、进入到docker目录 cd /var/lib/docker 3、运行du -h --max-depth1 (检索文件的最大深度1,即只检索汇总计算当前目录下的文件) 4、进入占用最大的 /containers文件夹&am…...