当前位置: 首页 > news >正文

centOS 快速安装和配置 NVIDIA docker Container Toolkit

要在 CentOS 上正确安装和配置 NVIDIA Container Toolkit,您可以按照以下步骤进行操作,如果1和2都已经完成,可以直接进行第3步NVIDIA Container Toolkit安装配置。

1. 安装 NVIDIA GPU 驱动程序:

您可以从 NVIDIA 官方网站下载适用于您的 GPU 型号和 CentOS 版本的驱动程序,并按照安装指南进行安装。确保您的系统已正确安装并配置了 NVIDIA GPU 驱动程序。

也可参考之前写的
在线安装
https://blog.csdn.net/holyvslin/article/details/132299184
下载安装:
https://blog.csdn.net/holyvslin/article/details/132143104

2. 安装 Docker CE:

2.1 删除旧版本的 Docker(如果存在):

sudo yum remove -y docker docker-common docker-selinux docker-engine

2.2 安装必要的软件包:

sudo yum install -y yum-utils device-mapper-persistent-data lvm2

2.3 添加 Docker CE 存储库:

sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

2.4 安装 Docker CE:

sudo yum install -y docker-ce

2.5 启动 Docker 服务:

sudo systemctl start docker

2.6 设置 Docker 开机自启:

sudo systemctl enable docker

3. 安装 NVIDIA Container Toolkit:

3.1 添加 NVIDIA Container Toolkit 存储库密钥:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

安装过程:

[xxx]# distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
[xxx]# curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo
[libnvidia-container]
name=libnvidia-container
baseurl=https://nvidia.github.io/libnvidia-container/stable/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[libnvidia-container-experimental]
name=libnvidia-container-experimental
baseurl=https://nvidia.github.io/libnvidia-container/experimental/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=0
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[nvidia-container-runtime]
name=nvidia-container-runtime
baseurl=https://nvidia.github.io/nvidia-container-runtime/stable/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/nvidia-container-runtime/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[nvidia-container-runtime-experimental]
name=nvidia-container-runtime-experimental
baseurl=https://nvidia.github.io/nvidia-container-runtime/experimental/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=0
gpgkey=https://nvidia.github.io/nvidia-container-runtime/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[nvidia-docker]
name=nvidia-docker
baseurl=https://nvidia.github.io/nvidia-docker/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/nvidia-docker/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt

3.2 安装 NVIDIA Container Toolkit:

sudo yum install -y nvidia-docker2

安装过程

[ xxx ]# yum install -y nvidia-docker2
Loaded plugins: fastestmirror, langpacks, nvidia
Loading mirror speeds from cached hostfile
epel/x86_64/metalink                                                                                                                         |  14 kB  00:00:00base                                                                                                                                         | 3.6 kB  00:00:00
centos-sclo-rh                                                                                                                               | 3.0 kB  00:00:00
centos-sclo-sclo                                                                                                                             | 3.0 kB  00:00:00
cuda-rhel7-x86_64                                                                                                                            | 3.0 kB  00:00:00
docker-ce-stable                                                                                                                             | 3.5 kB  00:00:00
epel                                                                                                                                         | 4.7 kB  00:00:00
extras                                                                                                                                       | 2.9 kB  00:00:00
libnvidia-container/x86_64/signature                                                                                                         |  833 B  00:00:00
Retrieving key from https://nvidia.github.io/libnvidia-container/gpgkey
Importing GPG key 0xF796ECB0:Userid     : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From       : https://nvidia.github.io/libnvidia-container/gpgkey
libnvidia-container/x86_64/signature                                                                                                         | 2.1 kB  00:00:00 !!!
nvidia-container-runtime/x86_64/signature                                                                                                    |  833 B  00:00:00
Retrieving key from https://nvidia.github.io/nvidia-container-runtime/gpgkey
Importing GPG key 0xF796ECB0:Userid     : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From       : https://nvidia.github.io/nvidia-container-runtime/gpgkey
nvidia-container-runtime/x86_64/signature                                                                                                    | 2.1 kB  00:00:00 !!!
nvidia-docker/x86_64/signature                                                                                                               |  833 B  00:00:00
Retrieving key from https://nvidia.github.io/nvidia-docker/gpgkey
Importing GPG key 0xF796ECB0:Userid     : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From       : https://nvidia.github.io/nvidia-docker/gpgkey
nvidia-docker/x86_64/signature                                                                                                               | 2.1 kB  00:00:00 !!!
updates                                                                                                                                      | 2.9 kB  00:00:00
(1/6): nvidia-docker/x86_64/primary                                                                                                          | 8.0 kB  00:00:01
(2/6): epel/x86_64/updateinfo                                                                                                                | 1.0 MB  00:00:01
(3/6): nvidia-container-runtime/x86_64/primary                                                                                               |  11 kB  00:00:01
(4/6): libnvidia-container/x86_64/primary                                                                                                    |  35 kB  00:00:01
(5/6): epel/x86_64/primary_db                                                                                                                | 7.0 MB  00:00:04
(6/6): updates/7/x86_64/primary_db                                                                                                           |  22 MB  00:00:10
libnvidia-container                                                                                                                                         231/231
nvidia-container-runtime                                                                                                                                      71/71
nvidia-docker                                                                                                                                                 54/54
Resolving Dependencies
--> Running transaction check
---> Package nvidia-docker2.noarch 0:2.13.0-1 will be installed
--> Processing Dependency: nvidia-container-toolkit >= 1.13.0-1 for package: nvidia-docker2-2.13.0-1.noarch
--> Running transaction check
---> Package nvidia-container-toolkit.x86_64 0:1.13.5-1 will be installed
--> Processing Dependency: nvidia-container-toolkit-base = 1.13.5-1 for package: nvidia-container-toolkit-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container-tools < 2.0.0 for package: nvidia-container-toolkit-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container-tools >= 1.13.5-1 for package: nvidia-container-toolkit-1.13.5-1.x86_64
--> Running transaction check
---> Package libnvidia-container-tools.x86_64 0:1.13.5-1 will be installed
--> Processing Dependency: libnvidia-container1(x86-64) >= 1.13.5-1 for package: libnvidia-container-tools-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container.so.1(NVC_1.0)(64bit) for package: libnvidia-container-tools-1.13.5-1.x86_64
--> Processing Dependency: libnvidia-container.so.1()(64bit) for package: libnvidia-container-tools-1.13.5-1.x86_64
---> Package nvidia-container-toolkit-base.x86_64 0:1.13.5-1 will be installed
--> Running transaction check
---> Package libnvidia-container1.x86_64 0:1.13.5-1 will be installed
--> Finished Dependency ResolutionDependencies Resolved====================================================================================================================================================================Package                                             Arch                         Version                           Repository                                 Size
====================================================================================================================================================================
Installing:nvidia-docker2                                      noarch                       2.13.0-1                          libnvidia-container                       8.7 k
Installing for dependencies:libnvidia-container-tools                           x86_64                       1.13.5-1                          libnvidia-container                        52 klibnvidia-container1                                x86_64                       1.13.5-1                          libnvidia-container                       1.0 Mnvidia-container-toolkit                            x86_64                       1.13.5-1                          libnvidia-container                       909 knvidia-container-toolkit-base                       x86_64                       1.13.5-1                          libnvidia-container                       3.1 MTransaction Summary
====================================================================================================================================================================
Install  1 Package (+4 Dependent packages)Total download size: 5.1 M
Installed size: 15 M
Downloading packages:
(1/5): libnvidia-container-tools-1.13.5-1.x86_64.rpm                                                                                         |  52 kB  00:00:01
(2/5): libnvidia-container1-1.13.5-1.x86_64.rpm                                                                                              | 1.0 MB  00:00:01
(3/5): nvidia-container-toolkit-1.13.5-1.x86_64.rpm                                                                                          | 909 kB  00:00:01
(4/5): nvidia-docker2-2.13.0-1.noarch.rpm                                                                                                    | 8.7 kB  00:00:00
(5/5): nvidia-container-toolkit-base-1.13.5-1.x86_64.rpm                                                                                     | 3.1 MB  00:00:02
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total                                                                                                                               1.1 MB/s | 5.1 MB  00:00:04
Running transaction check
Running transaction test
Transaction test succeeded
Running transactionInstalling : libnvidia-container1-1.13.5-1.x86_64                                                                                                             1/5Installing : libnvidia-container-tools-1.13.5-1.x86_64                                                                                                        2/5Installing : nvidia-container-toolkit-base-1.13.5-1.x86_64                                                                                                    3/5Installing : nvidia-container-toolkit-1.13.5-1.x86_64                                                                                                         4/5Installing : nvidia-docker2-2.13.0-1.noarch                                                                                                                   5/5
warning: /etc/docker/daemon.json saved as /etc/docker/daemon.json.rpmorigVerifying  : nvidia-container-toolkit-base-1.13.5-1.x86_64                                                                                                    1/5Verifying  : libnvidia-container-tools-1.13.5-1.x86_64                                                                                                        2/5Verifying  : nvidia-docker2-2.13.0-1.noarch                                                                                                                   3/5Verifying  : libnvidia-container1-1.13.5-1.x86_64                                                                                                             4/5Verifying  : nvidia-container-toolkit-1.13.5-1.x86_64                                                                                                         5/5Installed:nvidia-docker2.noarch 0:2.13.0-1Dependency Installed:libnvidia-container-tools.x86_64 0:1.13.5-1                libnvidia-container1.x86_64 0:1.13.5-1            nvidia-container-toolkit.x86_64 0:1.13.5-1nvidia-container-toolkit-base.x86_64 0:1.13.5-1Complete!

4. 配置 Docker:

4.1 创建或编辑 Docker 配置文件 /etc/docker/daemon.json

sudo nano /etc/docker/daemon.json

4.2 添加以下内容到文件中:

{"default-runtime": "nvidia","runtimes": {"nvidia": {"path": "nvidia-container-runtime","runtimeArgs": []}}
}

4.3 保存并关闭文件。

5. 重启 Docker 服务:

sudo systemctl restart docker

完成上述步骤后,您的 CentOS 系统将具备 NVIDIA Container Toolkit 的安装和配置。您可以使用带有 GPU 功能的 Docker 容器,并确保容器正确地使用 GPU 资源。

请注意,上述步骤适用于 CentOS 7 及更高版本。如果您使用的是其他版本的 CentOS,请参考 NVIDIA Container Toolkit 官方文档中针对您的 CentOS 版本的安装和配置指南。

6. NVIDIA Container Toolkit 的官方文档链接:

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/index.html

相关文章:

centOS 快速安装和配置 NVIDIA docker Container Toolkit

要在 CentOS 上正确安装和配置 NVIDIA Container Toolkit&#xff0c;您可以按照以下步骤进行操作&#xff0c;如果1和2都已经完成&#xff0c;可以直接进行第3步NVIDIA Container Toolkit安装配置。 1. 安装 NVIDIA GPU 驱动程序&#xff1a; 您可以从 NVIDIA 官方网站下载适…...

编程练习(2)

一.选择题 第一题&#xff1a; 考察转义字符和strlen函数求解字符串长度 进一步在VS中可以智能看出哪些字符是转义字符&#xff1a; 因此本体答案选择B 第二题&#xff1a; 本体较为简单&#xff0c;宏定义了三个数N,M,NUM,N值为2,M值为3&#xff0c;因此NUM值为8&#xff0c;…...

利用Figlet工具创建酷炫Linux Centos8服务器-登录欢迎界面-SHELL自动化编译安装代码

因为我们需要生成需要的特定字符,所以需要在当前服务器中安装Figlet,默认没有安装包的,其实如果我们也只要在一台环境中安装,然后需要什么字符只要复制到需要的服务器中,并不需要所有都安装。同样的,我们也可以利用此生成的字符用到脚本运行的开始起头部分,用ECHO分行标…...

Git Cherry-pick使用

概述 无论项目大小&#xff0c;当你和一群程序员一起工作时&#xff0c;处理多个 Git 分支之间的变更都会变得很困难。有时&#xff0c;与其把整个 Git 分支合并到另一个分支&#xff0c;不如选择并移动几个特定的提交。这个过程被称为 "挑拣", 即 Cherry-pick。 本…...

红帽8.5 ansible 安装和部署 |(简单版)

什么是ansible Ansible是一款基于OpenSSH开源的自动化运维工具&#xff0c;可以用它来配置系统、部署软件和编排更高级的 IT 任务&#xff0c;并且使用具有极高的安全性&#xff0c;ansible是当前市面上主流的自动化运维工具之一 为什么使用ansible 比较直观的说&#xff0c;…...

Visual Studio 2019 c++ 自定义注释 ----doxygen

可加入C 也可自定义。 <?xml version"1.0" encoding"utf-8"?> <CodeSnippets xmlns"http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet"><CodeSnippet Format"1.0.0"><Header><Title>注释…...

面试题. 零矩阵

编写一种算法&#xff0c;若M N矩阵中某个元素为0&#xff0c;则将其所在的行与列清零。 示例 1&#xff1a; 输入&#xff1a; [[1,1,1],[1,0,1],[1,1,1] ] 输出&#xff1a; [[1,0,1],[0,0,0],[1,0,1] ] 示例 2&#xff1a; 输入&#xff1a; [[0,1,2,0],[3,4,5,2],[1,3…...

易语言下载器

静态网站整站下载器 https://bbs.125.la/forum.php?modviewthread&tid14791313&highlight%E4%B8%8B%E8%BD%BD%E5%99%A8 易语言 之音乐下载器 https://blog.51cto.com/u_15309652/3153642 &#xff08;File Download Assistant&#xff09;下载链接&#xff1a;https…...

原生js获取今天、昨天、近7天的时间(年月日时分秒)

有的时候我们需要将今天,昨天,近7天的时间(年月日时分秒)作为参数传递给后端,如下图: 那怎么生成这些时间呢?如下代码里,在methods里的toDay方法、yesterDay方法、weekDay方法分别用于生成今天、昨天和近7天的时间: <template><div class="box"&…...

最强自动化测试框架Playwright(29)-文件选择对象

FileChooser对象通过page.on("filechoose")事件监听。 如下代码实现点击百度搜图按钮&#xff0c;上传文件进行搜索。 from playwright.sync_api import Playwright, sync_playwright, expectdef run(playwright: Playwright) -> None:browser playwright.chro…...

【烂尾】K8S部署

0x01 初见K8S 在地下城的迷宫深处&#xff0c;有一个神奇的存在&#xff0c;它就是Kubernetes&#xff01;宛如一个勇敢的冒险者&#xff0c;它穿越着这个复杂的迷宫&#xff0c;带领着容器们战胜各种惊险的挑战。 Kubernetes就像是一位无所畏惧的剑士&#xff0c;手握着强大…...

电机故障诊断(python程序,模型为MSCNN结合LSTM结合注意力机制模型,有注释)

代码运行环境要求&#xff1a;TensorFlow版本>2.4.0&#xff0c;python版本>3.6.0 1.电机常见的故障类型有以下几种&#xff1a; 轴承故障&#xff1a;轴承是电机运转时最容易受损的部件之一。常见故障包括磨损、疲劳、过热和润滑不良&#xff0c;这些问题可能导致噪音增…...

二叉树(ACM版)

【数据结构1-2】二叉树 - 题单 - 洛谷 【数据结构】day2-树_J娇娇_的博客-CSDN博客 上学时的作业 P1827 [USACO3.4] 美国血统 American Heritage 二叉树特点写法&#xff08;非二叉树&#xff09; 截取字符串写法 #include<string> #include<cstring> #include…...

Scratch 之 如何制作鼠标框(2)—— 鼠标框框定角色

hello&#xff0c;大家好&#xff0c;欢迎来到鼠标框系列的第二课时&#xff01; 咱们废话不多说&#xff0c;直接开始 首先&#xff0c;温故知新一下&#xff0c;上个教程我们讨论了如何绘制鼠标框&#xff0c;网址&#xff1a;绘制鼠标框 你说&#xff0c;一个鼠标框&…...

爬虫逆向实战(九)--猿人学第十三题

一、数据接口分析 主页地址&#xff1a;猿人学第十三题 1、抓包 通过抓包可以发现数据接口是api/match/13 2、判断是否有加密参数 请求参数是否加密&#xff1f; 无请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无cookie是否加密&#xff1f; 在“cookie”模块…...

NeuralNLP-NeuralClassifier的使用记录(一),训练预测自己的【英文文本多分类】

NeuralNLP-NeuralClassifier的使用记录&#xff0c;训练预测自己的英文文本多分类 NeuralNLP-NeuralClassifier是腾讯开发的一个多层多分类应用工具&#xff0c;支持的任务包括&#xff0c;文本分类中的二分类、多分类、多标签&#xff0c;以及层次多标签分类。支持的文本编码…...

Pycharm社区版连接WSL2中的Mysql8.*

当前时间2023.08.13&#xff0c;Windows11中默认的WSL版本已经是2了&#xff0c;在WSL2中默认的Ubuntu版本已经是22.04&#xff0c;而Ubuntu22.04中默认的Mysql版本已经是8.*。 Wsl 2 中安装mysql WSL2中安装Mysql的方法参考自微软官方文档【开始使用适用于 Linux 的 Windows …...

前端传递参数时,form-data 和 json 的区别

在传递参数时&#xff0c;form-data 和 JSON 是两种常见的数据格式。 form-data 是一种多部分表单数据格式&#xff0c;通常用于上传文件或包含二进制数据的表单提交。它使用 multipart/form-data 格式来编码数据。在使用 form-data 格式时&#xff0c;数据会被分割成多个部分&…...

FairyGUI-Unity侧菜单扩展

目录 缘由&#xff1a; 分析&#xff1a; 准备&#xff1a; 完整代码&#xff1a; 缘由&#xff1a; 在使用FairyGUI作为项目UI开发时&#xff0c;有时会使用FairyGUI提供的Scripting Define Symbols。当前FairyGUI中的Scripting Define Symbols有&#xff1a; 骨骼动画 …...

学习笔记十八:污点、容忍度

污点、容忍度 污点、容忍度管理节点污点把k8snode2当成是生产环境专用的&#xff0c;其他node是测试的给k8snode1也打上污点 污点、容忍度 给了节点选则的主动权&#xff0c;我们给节点打一个污点&#xff0c;不容忍的pod就运行不上来&#xff0c;污点就是定义在节点上的键值属…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用

阻止除自定义标签之外的所有标签 先输入一些标签测试&#xff0c;说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时&#xff08;如通过点击或键盘导航&…...