当前位置: 首页 > news >正文

探索C语言中的常见排序算法

探索C语言中的常见排序算法

排序算法是计算机科学中至关重要的基础知识之一,它们能够帮助我们对数据进行有序排列,从而更高效地进行搜索、插入和删除操作。在本篇博客中,我们将深入探讨C语言中的一些常见排序算法,包括它们的工作原理、实现代码以及性能比较。

1. 冒泡排序 (Bubble Sort)

冒泡排序是一种简单但低效的排序算法,它通过多次遍历数组,每次比较相邻的元素并交换位置,将最大的元素逐渐“冒泡”到数组的末尾。虽然不太适用于大型数据集,但冒泡排序在教学和理解排序概念时仍具有一定的价值。

void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {// 交换位置int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}
}

2. 选择排序 (Selection Sort)

选择排序是一种每次选取未排序部分中最小(或最大)的元素,然后将其放置到已排序部分的末尾。虽然比冒泡排序稍微快一些,但仍然不适用于大型数据集。

void selectionSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {int minIndex = i;for (int j = i + 1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}// 交换位置int temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}
}

3. 插入排序 (Insertion Sort)

插入排序的思想是将未排序的元素逐个插入到已排序部分的合适位置。它对于小型数据集和部分有序的数据集表现良好。

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}
}

4. 快速排序 (Quick Sort)

快速排序是一种高效的分治排序算法,它通过选择一个基准元素,将数组分成左右两个子数组,然后递归地对子数组进行排序。虽然在大多数情况下表现出色,但在最坏情况下可能会导致性能下降。

void quickSort(int arr[], int low, int high) {if (low < high) {int pivot = partition(arr, low, high);quickSort(arr, low, pivot - 1);quickSort(arr, pivot + 1, high);}
}int partition(int arr[], int low, int high) {int pivot = arr[high];int i = (low - 1);for (int j = low; j <= high - 1; j++) {if (arr[j] < pivot) {i++;// 交换位置int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}// 交换位置int temp = arr[i + 1];arr[i + 1] = arr[high];arr[high] = temp;return (i + 1);
}

5. 归并排序 (Merge Sort)

归并排序是一种稳定的分治排序算法,它将数组分成两个子数组,递归地对子数组进行排序,然后将排序好的子数组合并为一个有序数组。

void mergeSort(int arr[], int left, int right) {if (left < right) {int middle = left + (right - left) / 2;mergeSort(arr, left, middle);mergeSort(arr, middle + 1, right);merge(arr, left, middle, right);}
}void merge(int arr[], int left, int middle, int right) {int n1 = middle - left + 1;int n2 = right - middle;int L[n1], R[n2];for (int i = 0; i < n1; i++) {L[i] = arr[left + i];}for (int j = 0; j < n2; j++) {R[j] = arr[middle + 1 + j];}int i = 0, j = 0, k = left;while (i < n1 && j < n2) {if (L[i] <= R[j]) {arr[k] = L[i];i++;} else {arr[k] = R[j];j++;}k++;}while (i < n1) {arr[k] = L[i];i++;k++;}while (j < n2) {arr[k] = R[j];j++;k++;}
}

总结

在本篇博客中,我们对C语言中的一些常见排序算法进行了简要介绍。每个算法都有其独特的特点和适用范围,因此在实际应用中需要根据问题的性质选择合适的算法。要深入理解这些算法的工作原理,最好的方法是通过实际

相关文章:

探索C语言中的常见排序算法

探索C语言中的常见排序算法 排序算法是计算机科学中至关重要的基础知识之一&#xff0c;它们能够帮助我们对数据进行有序排列&#xff0c;从而更高效地进行搜索、插入和删除操作。在本篇博客中&#xff0c;我们将深入探讨C语言中的一些常见排序算法&#xff0c;包括它们的工作…...

【UE】Web Browser内嵌网页在场景中的褪色问题

使用WebBrowser放置在场景中时&#xff0c;网页颜色会出现异常的褪色。 这是因为 Web 浏览器插件以 sRGB 格式输出其颜色数据&#xff0c;而 Widget/3D Widget 需要线性 RGB 格式的数据。 可以通过创建在 3D Widget 中使用的新材质&#xff08;而不是默认的 Widget3DPassthr…...

rust入门系列之Rust介绍及开发环境搭建

Rust教程 Rust基本介绍 网站: https://www.rust-lang.org/ rust是什么 开发rust语言的初衷是&#xff1a; 在软件发展速度跟不上硬件发展速度&#xff0c;无法在语言层面充分的利用硬件多核cpu不断提升的性能和 在系统界别软件开发上&#xff0c;C出生比较早&#xff0c;内…...

embed mongodb 集成spring

在property文件下添加 de.flapdoodle.mongodb.embedded.version5.0.5 spring.mongodb.embedded.storage.oplog-size0不指定数据库&#xff0c;会使用test&#xff0c; port默认是0&#xff0c;随机端口号。 oplog-size mac默认是192mb, 其他系统会使用5%的磁盘可用空间&#x…...

ssh远程连接服务器

一、远程连接服务器简介 二、连接加密技术简介 三、ssh服务配置 四、用户登录ssh服务 Enforcing会强制限制&#xff0c;如端口为22&#xff0c;可以访问&#xff0c;如果是2000端口&#xff0c;不能使用 Permissive是宽容的模式&#xff0c;不限制使用端口 Enforcing会重启失败…...

性能分析之MySQL慢查询日志分析(慢查询日志)

一、背景 MySQL的慢查询日志是MySQL提供的一种日志记录,他用来记录在MySQL中响应的时间超过阈值的语句,具体指运行时间超过long_query_time(默认是10秒)值的SQL,会被记录到慢查询日志中。 慢查询日志一般用于性能分析时开启,收集慢SQL然后通过explain进行全面分析,一…...

每日一练 | mongo集群如何创建分片键

文章目录 MongoDB是什么什么是分片键环境如何设置分片键 MongoDB是什么 MongoDB 是一个基于分布式文件存储的数据库 什么是分片键 分片&#xff1a;每个分片包含分片数据的一部分。每个分片可以部署为副本集。 而分片键的作用就是把数据按一定的条件分布到各个分片中&#…...

Postman

Postman 简介下载安装 简介 Postman 是一款用于测试和开发 API&#xff08;应用程序编程接口&#xff09;的工具&#xff0c;它提供了用户友好的界面和丰富的功能&#xff0c;帮助开发者轻松地创建、测试、调试和文档化各种类型的 API。无论是在构建 Web 应用、移动应用还是其…...

chapter 3 Free electrons in solid - 3.1 自由电子模型

3.1 自由电子模型 Free electron model 研究晶体中的电子&#xff1a; 自由电子理论&#xff1a;不考虑离子实能带理论&#xff1a;考虑离子实&#xff08;周期性势场&#xff09;的作用 3.1.1 德鲁德模型 Drude Model - Classical Free Electron Model (1)德鲁德模型 德鲁…...

搭建博客时前端美化内容CSS推荐

一、背景 在搭建博客的时候&#xff0c;发现对其markdown文章内容进行渲染的时候&#xff0c;样式调整比较花费时间 二、解决思路 自己适配样式 缺点&#xff1a;ROI不高 使用开源的markdown的样式&#xff1a;github-markdown-css 三、实现教程 1、NPM安装 npm install …...

Linux中 socket编程中多进程/多线程TCP并发服务器模型

一、循环服务器(while)【不常用】 一次只能处理一个客户端的请求&#xff0c;等这个客户端退出后&#xff0c;才能处理下一个客户端。缺点&#xff1a;循环服务器所处理的客户端不能有耗时操作。 模型 sfd socket(); bind(); listen(); while(1) {newfd accept();while(1){r…...

【内网穿透】如何实现在外web浏览器远程访问jupyter notebook服务器

文章目录 前言1. Python环境安装2. Jupyter 安装3. 启动Jupyter Notebook4. 远程访问4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5. 固定公网地址 前言 Jupyter Notebook&#xff0c;它是一个交互式的数据科学和计算环境&#xff0c;支持多种编程语言&#xff0c;如…...

win10下如何安装ffmpeg

安装ffmpeg之前先安装win10 绿色软件管理软件&#xff1a;scoop. Scoop的基本介绍 Scoop是一款适用于Windows平台的命令行软件&#xff08;包&#xff09;管理工具&#xff0c;这里是Github介绍页。简单来说&#xff0c;就是可以通过命令行工具&#xff08;PowerShell、CMD等…...

分代收集 + 垃圾回收算法

分代假说 1. 弱分代假说&#xff08;Weak Generational Hypothesis&#xff09;&#xff1a;绝大多数对象都是朝生夕灭的 2. 强分代假说&#xff08;Strong Generational Hypothesis&#xff09;&#xff1a;熬过越多次垃圾收集过程的对象就越难以消亡 3. 跨代引用假说&…...

第三届“赣政杯”网络安全大赛 | 赛宁筑牢安全应急防线

​​为持续强化江西省党政机关网络安全风险防范意识&#xff0c;提高信息化岗位从业人员基础技能&#xff0c;提升应对网络安全风险处置能力。由江西省委网信办、江西省发展改革委主办&#xff0c;江西省大数据中心、国家计算机网络与信息安全管理中心江西分中心承办&#xff0…...

CHATGPT源码简介与使用指南

CHATGPT源码的基本介绍 CHATGPT源码备受关注&#xff0c;它是一款基于人工智能的聊天机器人&#xff0c;旨在帮助开发者快速搭建自己的聊天机器人&#xff0c;无需编写代码。下面是对CHATGPT搭建源码的详细介绍。 CHATGPT源码的构建和功能 CHATGPT源码是基于Google的自然语言…...

【C++精华铺】8.C++模板初阶

目录 1. 泛型编程 2. 函数模板 2.1 函数模板的概念及格式 2.2 函数模板的原理 2.3 模板的实例化 2.4 模板参数的匹配原则 3. 类模板 3.1 类模板格式 3.2 类模板的实例化 1. 泛型编程 什么是泛型编程&#xff1f;泛型编程是避免使用某种具体类型而去使用某种通用类型来进行…...

离谱的Bug

离谱的 Bug Bug 情况发现 Bug修改 Bug其他感受历史 Bug火星Spirit号Mars Global Surveyor任务 Bug 情况 有一次&#xff0c;我在开发一个网页应用程序时&#xff0c;遇到了一个令人目瞪口呆的Bug。这个Bug出现在一个特定的页面上&#xff0c;当用户点击某个按钮时&#xff0c;…...

leetcode 322. 零钱兑换

本题属于完全背包问题&#xff0c;但要求最少的硬币个数。于是设定dp数组的含义dp[i]:总金额为i时&#xff0c;能凑成i的最少硬币个数。 需要注意初始化dp数组时&#xff0c;除0以外的其他地方需要初始化为INT_MAX以保证在递推过程中能被正确的覆盖。 代码如下&#xff1a; …...

(二)结构型模式:6、外观模式(Facade Pattern)(C++实例)

目录 1、外观模式&#xff08;Facade Pattern&#xff09;含义 2、外观模式的UML图学习 3、外观模式的应用场景 4、外观模式的优缺点 5、C实现外观模式的简单实例 1、外观模式&#xff08;Facade Pattern&#xff09;含义 外观模式&#xff08;Facade Pattern&#xff09;…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...