Wordcloud | 风中有朵雨做的‘词云‘哦!~
1写在前面
今天可算把key
搞好了,不得不说🏥里手握生杀大权的人,都在自己的能力范围内尽可能的难为你。😂
我等小大夫
也是很无奈,毕竟奔波霸
、霸波奔
是要去抓唐僧的。 🤐
好吧,今天是词云
(Wordcloud
)教程,大家都说简单,但实际操作起来又有一些难度,一起试试吧。😋
2用到的包
rm(list = ls())
library(tidyverse)
library(tm)
library(wordcloud)
3示例数据
这里我准备好了2
个文件用于绘图,首先是第一个文件,每行含有n
个词汇。🤣
dataset <- read.delim("./wordcloud/dataset.txt", header=FALSE)
DT::datatable(dataset)

接着是第2
个文件,代表dataset
文件中每一行的label
。🥸
dataset_labels <- read.delim("./wordcloud/labels.txt",header=FALSE)
dataset_labels <- dataset_labels[,1]
dataset_labels_p <- paste("class",dataset_labels,sep="_")
unique_labels <- unique(dataset_labels_p)
unique_labels

4数据初步整理
然后我们利用sapply
函数把数据整理成list
。😘
可能会有小伙伴问sapply
和lapply
有什么区别呢!?😂
ok
, sapply()
函数与lapply()
函数类似,但返回的是一个简化的对象,例如向量或矩阵。😜
如果应用函数的结果具有相同的长度和类型,则sapply()
函数将返回一个向量。
如果结果具有不同的长度或类型,则sapply()
函数将返回一个矩阵。😂
dataset_s <- sapply(unique_labels,function(label) list( dataset[dataset_labels_p %in% label,1] ) )
str(dataset_s)

5数据整理成Corpus
接着我们把上面整理好的list
中每个元素都整理成一个单独的Corpus
。🤩
dataset_corpus <- lapply(dataset_s, function(x) Corpus(VectorSource( toString(x) )))
然后再把Cporus
合并成一个。🧐
dataset_corpus_all <- dataset_corpus
6去除部分词汇
修饰一下, 去除标点、数字、无用的词汇等等。😋
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, removePunctuation)
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, removeNumbers)
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, function(x) removeWords(x,stopwords("english")))
words_to_remove <- c("said","from","what","told","over","more","other","have",
"last","with","this","that","such","when","been","says",
"will","also","where","why","would","today")
dataset_corpus_all <- lapply(dataset_corpus_all, tm_map, function(x)removeWords(x, words_to_remove))
7计算term matrix并去除部分词汇
document_tm <- TermDocumentMatrix(dataset_corpus_all)
document_tm_mat <- as.matrix(document_tm)
colnames(document_tm_mat) <- unique_labels
document_tm_clean <- removeSparseTerms(document_tm, 0.8)
document_tm_clean_mat <- as.matrix(document_tm_clean)
colnames(document_tm_clean_mat) <- unique_labels
# 去除长度小于4的term
index <- as.logical(sapply(rownames(document_tm_clean_mat), function(x) (nchar(x)>3) ))
document_tm_clean_mat_s <- document_tm_clean_mat[index,]
head(document_tm_clean_mat_s)

8可视化
8.1 展示前500个词汇
comparison.cloud(document_tm_clean_mat_s,
max.words=500,
random.order=F,
use.r.layout = F,
scale = c(10,0.4),
title.size=1.4,
title.bg.colors = "white"
)

8.2 展示前2000个词汇
comparison.cloud(document_tm_clean_mat_s,
max.words=2000,
random.order=F,
use.r.layout = T,
scale = c(6,0.4),
title.size=1.4,
title.bg.colors = "white"
)

8.3 展示前2000个common词汇
commonality.cloud(document_tm_clean_mat_s,
max.words=2000,
random.order=F)


点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰
📍 🤩 LASSO | 不来看看怎么美化你的LASSO结果吗!?
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......
本文由 mdnice 多平台发布
相关文章:

Wordcloud | 风中有朵雨做的‘词云‘哦!~
1写在前面 今天可算把key搞好了,不得不说🏥里手握生杀大权的人,都在自己的能力范围内尽可能的难为你。😂 我等小大夫也是很无奈,毕竟奔波霸、霸波奔是要去抓唐僧的。 🤐 好吧,今天是词云&#x…...

《孤注一掷》现实版:29万打水漂,华为程序员也躲不过的诈骗
明天周五,约吗? 不管怎样,反正播妞已经订好了《孤注一掷》的电影票。不为别的,《孤注一掷》太敢拍了!!! 美女荷官在线发牌,高知程序员在线养“猪”,诈骗头目“虔诚”拜…...

C语言库函数之 qsort 讲解、使用及模拟实现
引入 我们在学习排序的时候,第一个接触到的应该都是冒泡排序,我们先来复习一下冒泡排序的代码,来作为一个铺垫和引入。 代码如下: #include<stdio.h>void bubble_sort(int *arr, int sz) {int i 0;for (i 0; i < sz…...

Maven之mirrorof范围
mirrorOf 是 central 还是 * 的问题 在配置阿里对官方中央仓库的镜像服务器时,我们使用到了 <mirror> 元素。 <mirror><id>aliyunmaven</id><mirrorOf>central</mirrorOf><name>阿里云公共仓库</name><url>…...

游戏中的UI适配
引用参考:感谢GPT UI适配原理以及常用方案 游戏UI适配是确保游戏界面在不同设备上以不同的分辨率、屏幕比例和方向下正常显示的关键任务。下面是一些常见的游戏UI适配方案: 1.分辨率无关像素(Resolution-Independent Pixels)&a…...

【Linux命令详解 | gzip命令】 gzip命令用于压缩文件,可以显著减小文件大小
文章标题 简介一,参数列表二,使用介绍1. 基本压缩和解压2. 压缩目录3. 查看压缩文件内容4. 测试压缩文件的完整性5. 强制压缩6. 压缩级别7. 与其他命令结合使用8. 压缩多个文件9. 自动删除原文件 总结 简介 在Linux中,gzip命令是一款强大的文…...

IP 协议的相关特性和数据链路层相关知识总结
目录 IP 协议的相关特性 一、IP协议的特性 二、 IP协议数据报格式 三、 IP协议的主要功能 1. 地址管理 动态分配 IP地址 NAT机制 NAT背景下的通信 IPV6 2. 路由控制 3.IP报文的分片与重组 数据链路层相关知识 1、以太网协议(Ethernet) 2.M…...
探索C语言中的常见排序算法
探索C语言中的常见排序算法 排序算法是计算机科学中至关重要的基础知识之一,它们能够帮助我们对数据进行有序排列,从而更高效地进行搜索、插入和删除操作。在本篇博客中,我们将深入探讨C语言中的一些常见排序算法,包括它们的工作…...

【UE】Web Browser内嵌网页在场景中的褪色问题
使用WebBrowser放置在场景中时,网页颜色会出现异常的褪色。 这是因为 Web 浏览器插件以 sRGB 格式输出其颜色数据,而 Widget/3D Widget 需要线性 RGB 格式的数据。 可以通过创建在 3D Widget 中使用的新材质(而不是默认的 Widget3DPassthr…...

rust入门系列之Rust介绍及开发环境搭建
Rust教程 Rust基本介绍 网站: https://www.rust-lang.org/ rust是什么 开发rust语言的初衷是: 在软件发展速度跟不上硬件发展速度,无法在语言层面充分的利用硬件多核cpu不断提升的性能和 在系统界别软件开发上,C出生比较早,内…...
embed mongodb 集成spring
在property文件下添加 de.flapdoodle.mongodb.embedded.version5.0.5 spring.mongodb.embedded.storage.oplog-size0不指定数据库,会使用test, port默认是0,随机端口号。 oplog-size mac默认是192mb, 其他系统会使用5%的磁盘可用空间&#x…...

ssh远程连接服务器
一、远程连接服务器简介 二、连接加密技术简介 三、ssh服务配置 四、用户登录ssh服务 Enforcing会强制限制,如端口为22,可以访问,如果是2000端口,不能使用 Permissive是宽容的模式,不限制使用端口 Enforcing会重启失败…...
性能分析之MySQL慢查询日志分析(慢查询日志)
一、背景 MySQL的慢查询日志是MySQL提供的一种日志记录,他用来记录在MySQL中响应的时间超过阈值的语句,具体指运行时间超过long_query_time(默认是10秒)值的SQL,会被记录到慢查询日志中。 慢查询日志一般用于性能分析时开启,收集慢SQL然后通过explain进行全面分析,一…...

每日一练 | mongo集群如何创建分片键
文章目录 MongoDB是什么什么是分片键环境如何设置分片键 MongoDB是什么 MongoDB 是一个基于分布式文件存储的数据库 什么是分片键 分片:每个分片包含分片数据的一部分。每个分片可以部署为副本集。 而分片键的作用就是把数据按一定的条件分布到各个分片中&#…...

Postman
Postman 简介下载安装 简介 Postman 是一款用于测试和开发 API(应用程序编程接口)的工具,它提供了用户友好的界面和丰富的功能,帮助开发者轻松地创建、测试、调试和文档化各种类型的 API。无论是在构建 Web 应用、移动应用还是其…...

chapter 3 Free electrons in solid - 3.1 自由电子模型
3.1 自由电子模型 Free electron model 研究晶体中的电子: 自由电子理论:不考虑离子实能带理论:考虑离子实(周期性势场)的作用 3.1.1 德鲁德模型 Drude Model - Classical Free Electron Model (1)德鲁德模型 德鲁…...
搭建博客时前端美化内容CSS推荐
一、背景 在搭建博客的时候,发现对其markdown文章内容进行渲染的时候,样式调整比较花费时间 二、解决思路 自己适配样式 缺点:ROI不高 使用开源的markdown的样式:github-markdown-css 三、实现教程 1、NPM安装 npm install …...
Linux中 socket编程中多进程/多线程TCP并发服务器模型
一、循环服务器(while)【不常用】 一次只能处理一个客户端的请求,等这个客户端退出后,才能处理下一个客户端。缺点:循环服务器所处理的客户端不能有耗时操作。 模型 sfd socket(); bind(); listen(); while(1) {newfd accept();while(1){r…...

【内网穿透】如何实现在外web浏览器远程访问jupyter notebook服务器
文章目录 前言1. Python环境安装2. Jupyter 安装3. 启动Jupyter Notebook4. 远程访问4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5. 固定公网地址 前言 Jupyter Notebook,它是一个交互式的数据科学和计算环境,支持多种编程语言,如…...

win10下如何安装ffmpeg
安装ffmpeg之前先安装win10 绿色软件管理软件:scoop. Scoop的基本介绍 Scoop是一款适用于Windows平台的命令行软件(包)管理工具,这里是Github介绍页。简单来说,就是可以通过命令行工具(PowerShell、CMD等…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...

Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
【学习记录】使用 Kali Linux 与 Hashcat 进行 WiFi 安全分析:合法的安全测试指南
文章目录 📌 前言🧰 一、前期准备✅ 安装 Kali Linux✅ 获取支持监听模式的无线网卡 🛠 二、使用 Kali Linux 进行 WiFi 安全测试步骤 1:插入无线网卡并确认识别步骤 2:开启监听模式步骤 3:扫描附近的 WiFi…...