神经网络基础-神经网络补充概念-30-搭建神经网络块
概念
搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。
代码实现
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers# 定义一个卷积块
def convolutional_block(x, num_filters, kernel_size, pool_size):x = layers.Conv2D(num_filters, kernel_size, activation='relu', padding='same')(x)x = layers.MaxPooling2D(pool_size)(x)return x# 构建神经网络模型
def build_model():inputs = layers.Input(shape=(28, 28, 1)) # 输入数据为28x28的灰度图像x = convolutional_block(inputs, num_filters=32, kernel_size=(3, 3), pool_size=(2, 2))x = convolutional_block(x, num_filters=64, kernel_size=(3, 3), pool_size=(2, 2))x = layers.Flatten()(x)x = layers.Dense(128, activation='relu')(x)outputs = layers.Dense(10, activation='softmax')(x) # 输出层,10个类别model = keras.Model(inputs, outputs)return model# 加载数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = np.expand_dims(x_train, axis=-1).astype('float32') / 255.0
x_test = np.expand_dims(x_test, axis=-1).astype('float32') / 255.0
y_train = keras.utils.to_categorical(y_train, num_classes=10)
y_test = keras.utils.to_categorical(y_test, num_classes=10)# 构建模型
model = build_model()# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_split=0.1)# 评估模型
test_loss, test_accuracy = model.evaluate(x_test, y_test)
print("Test Loss:", test_loss)
print("Test Accuracy:", test_accuracy)相关文章:
神经网络基础-神经网络补充概念-30-搭建神经网络块
概念 搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。 代码实现 import numpy as np import tensorflow as tf from tens…...
在线吉他调音
先看效果(图片没有声,可以下载源码看看,比这更好~): 再看代码(查看更多): <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&quo…...
Windows11 Docker Desktop 启动 -wsl kernel version too low
系统环境:windows11 1:docker下载 Docker: Accelerated Container Application Development 下载后双击安装即可 安装后启动Docker提示:Docker Desktop -wsl kernel version too low 处理起来也是非常方便 1:管理员身份启动:…...
Golang 中的 unsafe 包详解
Golang 中的 unsafe 包用于在运行时进行低级别的操作。这些操作通常是不安全的,因为可以打破 Golang 的类型安全性和内存安全性,使用 unsafe 包的程序可能会影响可移植性和兼容性。接下来看下 unsafe 包中的类型和函数。 unsafe.Pointer 类型 通常用于…...
linux 的swap、swappiness及kswapd原理【转+自己理解】
本文讨论的 swap基于Linux4.4内核代码 。Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑。 希望本文能让读者了解Linux对swap的使用大概是什么样子。阅读完本文,应该可以帮你解决以下问题: swap到底是干嘛的…...
什么是Java中的适配器模式?
Java中的适配器模式(Adapter Pattern)是一种设计模式,它允许我们将一种类的接口转换成另一种类的接口,以便于使用。适配器模式通常用于在不兼容的接口之间提供一种过渡性的接口,从而使代码更加灵活和可维护。 在Java中…...
MYSQL线上无锁添加索引
在需求上线过程中,经常会往一个数据量比较大的数据表中的字段加索引,一张几百万数据的表,加个索引往往要几分钟起步。在这段时间内,保证服务的正常功能运行十分重要,所以需要线上无锁添加索引,即加索引的语…...
如何实现客户自助服务?打造产品知识库
良好的客户服务始于自助服务。根据哈佛商业评论,81% 的客户在联系工作人员之前尝试自己解决问题。92% 的客户表示他们更喜欢使用产品知识库/帮助中心。 所以本文主要探讨了产品知识库是什么,有哪些优势以及如何创建。 产品知识库是什么 产品知识库是将…...
LeetCode环形子数组的最大和(编号918)
目录 一.题目 二.解题思路 三.解题代码 一.题目 918. 环形子数组的最大和 给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。 环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[…...
PhpOffice/PhpSpreadsheet读取和写入Excel
PhpSpreadsheet是一个纯PHP编写的组件库,它使用现代PHP写法,代码质量和性能比PHPExcel高不少,完全可以替代PHPExcel(PHPExcel已不再维护)。使用PhpSpreadsheet可以轻松读取和写入Excel文档,支持Excel的所有…...
jenkins自动化部署Jenkinsfile文件配置
简介 使用jenkins部署时会读取项目中Jenkinsfile文件,文件配置不对会导致部署失败 文件内容 pipeline {agent anyparameters {string(name: project_name, defaultValue: xxx1, description: 项目jar名称)string(name: version, defaultValue: xxx2, description…...
【socket编程简述】TCP UDP 通信总结、TCP连接的三次握手、TCP断开的四次挥手
Socket:Socket被称做 套接字,是网络通信中的一种约定。 Socket编程的应用无处不在,我们平时用的QQ、微信、浏览器等程序.都与Socket编程有关。 三次握手 四次断开 面试可…...
多线程-死锁
/*** 死锁demo*/ public class DeadlockDemo {public static void main(String[] args) {// 创建两个对象final Object resource1 "resource1";final Object resource2 "resource2";// 创建第一个线程Thread t1 new Thread(() -> {// 尝试锁定resour…...
P1006 [NOIP2008 提高组] 传纸条
P1006 [NOIP2008 提高组] 传纸条 题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 思路四维dp三维dp AC四维代码:AC三维代码: 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中&#…...
杭电比赛总结
我们的队伍:team013 另外两队:team014、team015 今天是我第一次打杭电,发现杭电多数都是猜结论题 先给一下我们的提交数据 Submit TimeProblem IDTimeMemoryJudge Status4:59:59101115 MS1692 KWrong Answer4:59:55101115 MS1684 KWrong…...
dom靶场
靶场下载地址: https://www.vulnhub.com/entry/domdom-1,328/ 一、信息收集 获取主机ip nmap -sP 192.168.16.0/24netdiscover -r 192.168.16.0/24端口版本获取 nmap -sV -sC -A -p 1-65535 192.168.16.209开放端口只有80 目录扫描 这里扫描php后缀的文件 g…...
go struct 的常见问题
go struct 的常见问题 1. 什么是struct?2. 如何声明、定义和创建一个struct?3. struct和其他数据类型(如数组、切片、map等)有什么区别?4. 如何访问struct字段?5. struct是否支持继承,是否支持重…...
Linux系统下的性能分析命令
在 Linux 系统下,有许多用于性能分析和调试的命令和工具,可以帮助您识别系统瓶颈、优化性能以及调查问题。本文将介绍在性能分析过程中,可能使用到的一些命令。 以下是一些常用的性能分析命令和工具汇总: 命令功能简述top用于实…...
第十三课:QtCmd 命令行终端应用程序开发
功能描述:开发一个类似于 Windows 命令行提示符或 Linux 命令行终端的应用程序 一、最终演示效果 QtCmd 不是因为它是 Qt 的组件,而是采用 Qt 开发了一个类似 Windows 命令提示符或者 Linux 命令行终端的应用程序,故取名为 QtCmd。 上述演示…...
Jmeter进阶使用:BeanShell实现接口前置和后置操作
一、背景 我们使用Jmeter做压力测试或者接口测试时,除了最简单的直接对接口发起请求,很多时候需要对接口进行一些前置操作:比如提前生成测试数据,以及一些后置操作:比如提取接口响应内容中的某个字段的值。举个最常用…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...
