Grafana Prometheus 通过JMX监控kafka 【2023最新方式】
第三方kafka exporter方案
目前网上关于使用Prometheus 监控kafka的大部分资料都是使用一个第三方的
kafka exporter,他的原理大概就是启动一个kafka客户端,获取kafka服务器的信息,然后提供一些metric接口供Prometheus使用,随意它能展示的监控信息比较有限,只有每个主题的分区数,每秒/分钟消息数,消费组的lag数。但是kafka本身的JMX有提供500+的监控信息可以进行监控,当然不是说这这么监控指标都很重要,相比kafka exporter直接使用JMX可监控的选项会更多。

Prometheus官方方案
Prometheus官方提供的jmx_exporter可以将JMX转换为Prometheus Metrics格式。
Prometheus JMX exporter使用方式选择
jmx_exporter提供两种用法:
- 一种是启动独立的进程。JVM 启动时指定参数,暴露 JMX 的 RMI 接口,JMX_Exporter 调用 RMI 获取 JVM 运行时状态数据,转换为 Prometheus metrics 格式,并暴露端口让 Prometheus 采集。
- 一种是JVM进程内启动,通过java agent的形式运行,进程内读取 JVM 运行时状态数据,转换为 Prometheus metrics 格式,并暴露端口让 Prometheus 采集。官方比较推荐使用这种方式。
使用JMX exporter监控kafka
在kafka-server-start.sh最上面添加下面的代码:
export KAFKA_OPTS="-javaagent:/opt/kafka_2.11-1.1.0/bin/jmx_prometheus_javaagent-0.19.0.jar=9990:/opt/kafka_2.11-1.1.0/bin/kafka-jmx.yml"
jmx_exporter官网下载最新的jmx_prometheus_javaagent-0.19.0.jar包。
kafka-jmx.yml
lowercaseOutputName: truerules:
# Special cases and very specific rules
- pattern : kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Valuename: kafka_server_$1_$2type: GAUGElabels:clientId: "$3"topic: "$4"partition: "$5"
- pattern : kafka.server<type=(.+), name=(.+), clientId=(.+), brokerHost=(.+), brokerPort=(.+)><>Valuename: kafka_server_$1_$2type: GAUGElabels:clientId: "$3"broker: "$4:$5"
- pattern : kafka.coordinator.(\w+)<type=(.+), name=(.+)><>Valuename: kafka_coordinator_$1_$2_$3type: GAUGE# Generic per-second counters with 0-2 key/value pairs
- pattern: kafka.(\w+)<type=(.+), name=(.+)PerSec\w*, (.+)=(.+), (.+)=(.+)><>Countname: kafka_$1_$2_$3_totaltype: COUNTERlabels:"$4": "$5""$6": "$7"
- pattern: kafka.(\w+)<type=(.+), name=(.+)PerSec\w*, (.+)=(.+)><>Countname: kafka_$1_$2_$3_totaltype: COUNTERlabels:"$4": "$5"
- pattern: kafka.(\w+)<type=(.+), name=(.+)PerSec\w*><>Countname: kafka_$1_$2_$3_totaltype: COUNTER- pattern: kafka.server<type=(.+), client-id=(.+)><>([a-z-]+)name: kafka_server_quota_$3type: GAUGElabels:resource: "$1"clientId: "$2"- pattern: kafka.server<type=(.+), user=(.+), client-id=(.+)><>([a-z-]+)name: kafka_server_quota_$4type: GAUGElabels:resource: "$1"user: "$2"clientId: "$3"# Generic gauges with 0-2 key/value pairs
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+), (.+)=(.+)><>Valuename: kafka_$1_$2_$3type: GAUGElabels:"$4": "$5""$6": "$7"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+)><>Valuename: kafka_$1_$2_$3type: GAUGElabels:"$4": "$5"
- pattern: kafka.(\w+)<type=(.+), name=(.+)><>Valuename: kafka_$1_$2_$3type: GAUGE# Emulate Prometheus 'Summary' metrics for the exported 'Histogram's.
#
# Note that these are missing the '_sum' metric!
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+), (.+)=(.+)><>Countname: kafka_$1_$2_$3_counttype: COUNTERlabels:"$4": "$5""$6": "$7"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.*), (.+)=(.+)><>(\d+)thPercentilename: kafka_$1_$2_$3type: GAUGElabels:"$4": "$5""$6": "$7"quantile: "0.$8"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.+)><>Countname: kafka_$1_$2_$3_counttype: COUNTERlabels:"$4": "$5"
- pattern: kafka.(\w+)<type=(.+), name=(.+), (.+)=(.*)><>(\d+)thPercentilename: kafka_$1_$2_$3type: GAUGElabels:"$4": "$5"quantile: "0.$6"
- pattern: kafka.(\w+)<type=(.+), name=(.+)><>Countname: kafka_$1_$2_$3_counttype: COUNTER
- pattern: kafka.(\w+)<type=(.+), name=(.+)><>(\d+)thPercentilename: kafka_$1_$2_$3type: GAUGElabels:quantile: "0.$4"
配置好kafka-server-start.sh后还需要重启kafka。
Prometheus配置
在Prometheus的prometheus.yml添加如下内容。注意端口号为KAFKA_OPTS配置的端口。
- job_name: "kafka_jmx"metrics_path: /metricsstatic_configs:- targets: ['192.168.249.1:9990','192.168.249.2:9990','192.168.249.3:9990']
配置完成后重新加载Prometheus配置文件就可以了。
grafana 配置
通过上面配置后,可以在grafan中找到对应的面板直接来用。
https://grafana.com/grafana/dashboards/18276-kafka-dashboard/
效果

相关文章:
Grafana Prometheus 通过JMX监控kafka 【2023最新方式】
第三方kafka exporter方案 目前网上关于使用Prometheus 监控kafka的大部分资料都是使用一个第三方的 kafka exporter,他的原理大概就是启动一个kafka客户端,获取kafka服务器的信息,然后提供一些metric接口供Prometheus使用,随意它…...
发布游戏,进行打包。(Unity)
做到这里,我们的项目基本功能已经完成了,如果你还想使项目功能更加完善,可以自己思考如何补充,充分发挥并进行优化使效果达到更加美好。 首先呢,我们这里是说打包Window电脑游戏,我们直接点击菜单栏文件-&…...
我的C++待办事项
2023年8月17日 内存管理部分 学习智能指针 写一篇关于怎么在Linux中安装和使用vclgrind的博客(2023年8月17日下午完成) 拍一个关于在Linux中安装和使用vclgrind的视频 在Windows上怎么检测内存泄漏 怎么使用Address Sanitizer 在Linux上如何使用gc…...
浙大数据结构第七周之Saving James Bond - Hard Version
题目详情: This time let us consider the situation in the movie "Live and Let Die" in which James Bond, the worlds most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake f…...
线程同步条件变量
为何要线程同步 在线程互斥中外面解决了多线程访问共享资源所会造成的问题。 这篇文章主要是解决当多线程互斥后引发的新的问题:线程饥饿的问题。 什么是线程饥饿?互斥导致了多线程对临界区访问只能改变为串行,这样访问临界资源的代码只能…...
jeecgboot-vue3 查询区 label 文字居左实现
以系统管理中的系统角色界面为例 操作步骤 1. 通过路由或者工具找到当前代码所在的文件 src/views/system/role/index.vue 2. 找到 useListPage 调用,fromConfig 对象加入 labelWidth 和 rowProps 属性 formConfig: {labelWidth: 65, // 设置所有的label宽rowPr…...
CentOS系统环境搭建(五)——Centos7安装maven
centos系统环境搭建专栏🔗点击跳转 Centos7安装maven 下载压缩包 maven下载官网 解压 压缩包放置到/usr/local tar -xvf apache-maven-3.9.2-bin.tar.gz配置环境变量 vim /etc/profile在最下面追加 MAVEN_HOME/usr/local/apache-maven-3.9.2 export PATH${MAV…...
.eslintrc配置
ESLint 标准规则 /*** AlloyTeam ESLint 规则** 包含所有 ESLint 规则* 使用 babel-eslint 作为解析器** fixable 表示此配置支持 --fix* off 表示此配置被关闭了,并且后面说明了关闭的原因*/module.exports {parser: babel-eslint,parserOptions: {ecmaVersion: 2…...
LangChain手记 Models,Prompts and Parsers
整理并翻译自DeepLearning.AILangChain的官方课程:Models,Prompts and Parsers(源码可见) 模型,提示词和解析器(Models, Prompts and Parsers) 模型:大语言模型提示词:构建传递给模…...
Cannot resolve plugin ... maven插件和依赖无法下载解决方法
将 maven/conf/settings.xml 配置文件中的mirror修改成如下即可 <?xml version"1.0" encoding"UTF-8"?> <settings xmlns"http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"…...
【skynet】skynet 服务间通信
写在前面 skynet 服务之间有自己的一套高效通信 API 。本文给出简单的示例。 文章目录 写在前面准备工作编写代码运行结果 准备工作 首先要有一个编译好,而且工作正常的 skynet 。 编写代码 在 skynet/example 目录编写一个配置文件,两个代码文件。 …...
Flink的Standalone部署实战
在Flink是通用的框架,以混合和匹配的方式支持部署不同场景,而Standalone单机部署方便快速部署,记录本地部署过程,方便备查。 环境要求 1)JDK1.8及以上 2)flink-1.14.3 3)CentOS7 Flink相关信…...
open cv学习 (一)像素的操作
open cv 入门 像素的操作 demo1 import cv2 import os import numpy as np# 1、读取图像 # imread()方法# 设置图像的路径 Path "./img.png" # 设置读取颜色类型默认是1代表彩色图 0 代表灰度图 # 彩色图 flag 1 # 灰度图 #flag 0# 读取图像,返回值…...
基于C#的消息处理的应用程序 - 开源研究系列文章
今天讲讲基于C#里的基于消息处理的应用程序的一个例子。 我们知道,Windows操作系统的程序是基于消息处理的。也就是说,程序接收到消息代码定义,然后根据消息代码定义去处理对应的操作。前面有一个博文例子( C#程序的启动显示方案(无窗口进程发…...
C语言刷题指南(一)
📙作者简介: 清水加冰,目前大二在读,正在学习C/C、Python、操作系统、数据库等。 📘相关专栏:C语言初阶、C语言进阶、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 👍 收藏 ⭐留言 &am…...
VMware虚拟机Ubuntu无法连接网络的解决方法
一、解决办法 网络适配器设置 终端依次执行下面命令即可 sudo nmcli networking off sudo nmcli networking onsudo service network-manager start #或者 sudo service NetworkManager start成功出现这个图标,即代表网络连接成功。...
基于CentOS 7 部署社区版Haproxy
HAProxy是法国开发者 威利塔罗(Willy Tarreau) 在2000年使用C语言开发的一个开源软件,是一款具 备高并发(一万以上)、高性能的TCP和HTTP负载均衡器,支持基于cookie的持久性,自动故障切换,支 持正则表达式及web状态统计。 目录 1…...
Git和GitHub
文章目录 1.Git介绍2. 常用命令3. Git分支操作4. Git团队协作机制5. GitHub操作6. IDEA集成Git7.IDEA操作GitHub8. Gitee 1.Git介绍 Git免费的开源的分布式版本控制系统,可以快速高效从小到大的各种项目 Git易于学习,占地面积小,性能快。它…...
spring入门基本介绍及注入方式---详细介绍
一,spring的简介 Spring是一个开源框架,它由Rod Johnson创建。它是为了解决企业应用开发的复杂性而创建的。 提供了许多功能强大且易于使用的特性,使得开发者能够更加轻松地构建可维护且可扩展的应用程序,简单来说: Spring使用基…...
神经网络基础-神经网络补充概念-24-随机初始化
由来 在神经网络的训练过程中,权重和偏差的初始值对模型的性能和训练过程的收敛速度都有影响。随机初始化是一种常用的权重和偏差初始值设置方法,它有助于打破对称性,避免网络陷入局部最优解。 概念 当所有权重和偏差都被设置为相同的初始…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
