当前位置: 首页 > news >正文

Codeforces 1856E2 复杂度分析 + DP

题意

传送门 Codeforces 1856E2 PermuTree (hard version)

题解

可以独立考虑每一个固定的 p = l c a ( u , v ) p=lca(u,v) p=lca(u,v) 对答案的贡献。可以观察到,对于 p p p 的每一棵子树,其所有节点在最优情况下仅有 a p < a v a_p < a_v ap<av a p > a v a_p > a_v ap>av 两种可能。那么需要在值域上将子树的节点左右划分,那么需要求解所有子树的子集中,子树规模 s z v sz_v szv 的和最接近所有子树和的 1 / 2 1/2 1/2 的值 x x x,则对答案的贡献为 x ∗ ( s z p − 1 − x ) x * (sz_p - 1 - x) x(szp1x)。对于上述背包问题,满足 s z u + ⋯ + s z v = s z p − 1 sz_u + \cdots + sz_v = sz_p - 1 szu++szv=szp1,可以做到 O ( s z p s z p ) O(sz_p\sqrt{sz_p}) O(szpszp ),具体做法类似于二进制拆分,不断将相同的值合并,最终每一个不同的值仅有常数个,则不同的值数量为 O ( s z p ) O(\sqrt{sz_p}) O(szp )

若存在 s z v ∗ 2 ≥ s z p − 1 sz_v * 2 \geq sz_p - 1 szv2szp1,则无需进行背包。考虑最坏情况,即平衡的多叉树,容易观察到所有背包 DP 的复杂度为 O ( n n ) O(n\sqrt{n}) O(nn ), std::bitset 优化即可。

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr int N = 1E6;template <int m = 1>
ll knapsack(int n, vector<int> &b) {if (m < n) {return knapsack<min(m * 2, N)>(n, b);}bitset<m + 1> bt;bt[0] = 1;for (int x : b) {bt |= bt << x;}int res = -1;for (int i = 0; i <= m; ++i) {if (bt[i] > 0) {if (res == -1 || abs(2 * res - n) > abs(2 * i - n)) {res = i;}}}return res;
}int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n;cin >> n;vector<vector<int>> g(n);for (int i = 1; i < n; ++i) {int p;cin >> p;g[p - 1].push_back(i);}auto get = [&](vector<int> &a) -> ll {if ((int)a.size() < 2) {return 0;}int sum = 0, mx = 0;for (int x : a) {sum += x;mx = max(mx, x);}if (mx * 2 >= sum) {return (ll)mx * (sum - mx);}vector<int> b;vector<int> freq(sum + 1);for (int x : a) {freq[x] += 1;}for (int i = 1; i <= sum; ++i) {if (freq[i] > 0) {int d = (freq[i] - 1) / 2;freq[2 * i] += d;freq[i] -= d * 2;for (int j = 0; j < freq[i]; ++j) {b.push_back(i);}}}int x = knapsack(sum, b);return (ll)x * (sum - x);};vector<int> sz(n);ll res = 0;function<void(int)> dfs = [&](int v) {sz[v] = 1;vector<int> a;for (int u : g[v]) {dfs(u);a.push_back(sz[u]);sz[v] += sz[u];}res += get(a);};dfs(0);cout << res << '\n';return 0;
}

相关文章:

Codeforces 1856E2 复杂度分析 + DP

题意 传送门 Codeforces 1856E2 PermuTree (hard version) 题解 可以独立考虑每一个固定的 p l c a ( u , v ) plca(u,v) plca(u,v) 对答案的贡献。可以观察到&#xff0c;对于 p p p 的每一棵子树&#xff0c;其所有节点在最优情况下仅有 a p < a v a_p < a_v ap…...

Windows - UWP - 为UWP应用创建桌面快捷方式

Windows - UWP - 为UWP应用创建桌面快捷方式 前言 这是一个较为简单的方式&#xff0c;不需要过多的命令行。 How 首先Win R -> shell:AppsFolder -> 回车&#xff0c; 这将显示电脑上的已安装应用&#xff08;Win32 & UWP&#xff09;&#xff1a; 找到想要创建…...

了解Web DDoS海啸攻击的4个维度

我们都知道近年来网络攻击的数量和频率急剧上升&#xff0c;针对Web应用程序的DDoS海啸攻击就是其中增长非常迅速的一个种类。过去常见的HTTP/S洪水攻击正在大范围的转变为更难对付的Web DDoS海啸攻击&#xff0c;每个人都应该提前做好被攻击的准备并采取适当的保护措施。 哪些…...

【数学建模】逻辑回归算法(Logistic Resgression)

逻辑回归算法 简介逻辑回归与条件概率绘制sigmoid函数 简介 逻辑回归算法是一种简单但功能强大的二元线性分类算法。需要注意的是&#xff0c;尽管"逻辑回归"名字带有“回归”二字&#xff0c;但逻辑回归是一个分类算法&#xff0c;而不是回归算法。 我认为&#xff…...

Hadoop HA集群两个NameNode都是standby或者主NameNode是standby,从NameNode是active的情况集锦

文章目录 背景架构HDFS HA配置错误原因解决方案方案一方案二方案三&#xff08;首先查看自己各参数文件是否配置出错&#xff09; 后记补充failovertransitionToActive 常用端口号及配置文件常用端口号hadoop3.xhadoop2.x 常用配置文件 这里说一下配置Hadoop HA集群可能出现的两…...

[Go版]算法通关村第十一关白银——位运算的高频算法题

目录 专题1&#xff1a;位移的妙用题目&#xff1a;位1的个数&#xff08;也被称为汉明重量&#xff09;解法1&#xff1a;遍历所有位&#xff0c;判断每个位的数字是否是1Go代码 解法2&#xff1a;依次消除每个1的位 numnum&(num-1)Go代码 题目&#xff1a;比特位计数思路…...

Swift 基础

工程目录 请点击下面工程名称&#xff0c;跳转到代码的仓库页面&#xff0c;将工程 下载下来 Demo Code 里有详细的注释 点击下载代码&#xff1a;swift-01...

IDEA的常用设置,让你更快速的编程

一、前言 在使用JetBrains的IntelliJ IDEA进行软件开发时&#xff0c;了解和正确配置一些常用设置是非常重要的。IDEA的强大功能和定制性使得开发过程更加高效和舒适。 在本文中&#xff0c;我们将介绍一些常用的IDEA设置&#xff0c;帮助您更好地利用IDEA进行开发。这些设置包…...

docker 镜像的导出与导入 save 与 load

一、镜像导出 docker save 导出 将系统中的镜像保存为压缩包&#xff0c;进行文件传输。使用 docker save --help 查看命令各参数&#xff0c;或者去docker官网查看.以 hello-world镜像为例。 A&#xff1a;将镜像保存为tar包 docker save image > package.tar docker sa…...

WPF显示初始界面--SplashScreen

WPF显示初始界面–SplashScreen 前言 WPF应用程序的运行速度快&#xff0c;但并不能在瞬间启动。当第一次启动应用程序时&#xff0c;会有一些延迟&#xff0c;因为公共语言运行时&#xff08;CLR&#xff09;首先需要初始化.NET环境&#xff0c;然后启动应用程序。 对于WPF中…...

08- AD/DA模/数转换

AD/DA模/数转换 8、AD/DA模/数转换8.1 AD转换注意 示例8.2 DA转换DAC转换原理&#xff1a; 8.3 PWM的DAC 8、AD/DA模/数转换 8.1 AD转换 通道引脚对照表&#xff1a; ADC的引脚&#xff1a; 规则通道和注入通道&#xff1a; 各个通道可以在单次、连续、扫描或者间断模式里…...

DTC服务(0x14 0x19 0x85)

DTC相关的服务有ReadDTCInformation (19) service&#xff0c;ControlDTCSetting (85) service和ReadDTCInformation (19) service ReadDTCInformation (19) service 该服务允许客户端从车辆内任意一台服务器或一组服务器中读取驻留在服务器中的诊断故障代码( DTC )信息的状态…...

【国护攻防场景下的沙箱技术对比】

目录 前言 沙箱技术分析 总结 前言 真高兴呀&#xff0c;又是受到红队大佬青睐的一天&#xff0c;今天下午很荣幸的收到了来自红队大佬的恶意投喂&#xff0c;把我们各位在座100年工作经验的蓝队师傅们吓得赶忙拔掉自己的电脑电源&#xff0c;断掉自己的网线&#xff0c;…...

springboot综合案例第三课

SpringSecurity入门 什么是SpringSecurity Spring Security 的前身是 Acegi Security &#xff0c;是 Spring 项目组中用来提供安全认证服务的框架。 (https://projects.spring.io/spring-security/) Spring Security 为基于J2EE企业应用软件提供了全面安全服务。特别 是使…...

面试经典150题——罗马数字转整数

罗马数字包含以下七种字符: I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#x…...

第三篇|金融人数据来源有哪些

数据对于金融行业真的很重要&#xff0c;那么金融人有哪些途径查数据呢&#xff1f; 国内&#xff1a; 1. 国家统计局 这个应该是无论什么行业都使用最频繁的网站&#xff0c;每个月都会固定发上个月资产投资数据 、工业增加值和利润数据等常规数据&#xff0c;其他数据也会…...

爬虫逆向实战(二)--某某观察城市排行榜

一、数据接口分析 主页地址&#xff1a;某某观察 1、抓包 通过抓包可以发现数据接口是multi 2、判断是否有加密参数 请求参数是否加密&#xff1f; 无请求头是否加密&#xff1f; 无cookie是否加密&#xff1f; 无响应数据是否加密&#xff1f; 通过查看“响应”板块可以…...

Grafana Prometheus 通过JMX监控kafka 【2023最新方式】

第三方kafka exporter方案 目前网上关于使用Prometheus 监控kafka的大部分资料都是使用一个第三方的 kafka exporter&#xff0c;他的原理大概就是启动一个kafka客户端&#xff0c;获取kafka服务器的信息&#xff0c;然后提供一些metric接口供Prometheus使用&#xff0c;随意它…...

发布游戏,进行打包。(Unity)

做到这里&#xff0c;我们的项目基本功能已经完成了&#xff0c;如果你还想使项目功能更加完善&#xff0c;可以自己思考如何补充&#xff0c;充分发挥并进行优化使效果达到更加美好。 首先呢&#xff0c;我们这里是说打包Window电脑游戏&#xff0c;我们直接点击菜单栏文件-&…...

我的C++待办事项

2023年8月17日 内存管理部分 学习智能指针 写一篇关于怎么在Linux中安装和使用vclgrind的博客&#xff08;2023年8月17日下午完成&#xff09; 拍一个关于在Linux中安装和使用vclgrind的视频 在Windows上怎么检测内存泄漏 怎么使用Address Sanitizer 在Linux上如何使用gc…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...