左邻右舍裂差法求和 以及 连续自然数的立方和公式
左邻右舍裂差法求和
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + . . . + n × ( n + 1 ) = ? 1\times2+2\times3+3\times4+4\times5+...+n\times(n+1)=? 1×2+2×3+3×4+4×5+...+n×(n+1)=?
看成数列 a n = n 2 + n , ( n ∈ N + ) a_n=n^2+n, (n\in N^+) an=n2+n,(n∈N+) 的前 n n n 项和 S n S_n Sn.
原理:将式子中的一项裂为两项,分开后的两项与前后各项能够消去。
原式 × 3 ÷ 3 = 原式\times3\div3= 原式×3÷3=
1 × 2 × 3 + 2 × 3 × 3 + 3 × 4 × 3 + 4 × 5 × 3 + . . . + n × ( n + 1 ) × 3 3 \dfrac{1\times2\times3+2\times3\times3+3\times4\times3+4\times5\times3+...+n\times(n+1)\times3}{3} 31×2×3+2×3×3+3×4×3+4×5×3+...+n×(n+1)×3
= 1 × 2 × 3 + 2 × 3 × ( 4 − 1 ) + 3 × 4 × ( 5 − 2 ) + 4 × 5 × ( 6 − 3 ) + . . . + n × ( n + 1 ) × [ ( n + 2 ) − ( n − 1 ) ] 3 =\dfrac{1\times2\times3+2\times3\times(4-1)+3\times4\times(5-2)+4\times5\times(6-3)+...+n\times(n+1)\times[(n+2)-(n-1)]}{3} =31×2×3+2×3×(4−1)+3×4×(5−2)+4×5×(6−3)+...+n×(n+1)×[(n+2)−(n−1)]
= 1 × 2 × 3 − 1 × 2 × 3 + 2 × 3 × 4 − 2 × 3 × 4 + 3 × 4 × 5 − 3 × 4 × 5 + 4 × 5 × 6 − . . . + n × ( n + 1 ) × ( n + 2 ) 3 =\dfrac{1\times2\times3-1\times2\times3+2\times3\times4-2\times3\times4+3\times4\times5-3\times4\times5+4\times5\times6-...+n\times(n+1)\times(n+2)}{3} =31×2×3−1×2×3+2×3×4−2×3×4+3×4×5−3×4×5+4×5×6−...+n×(n+1)×(n+2)
= n × ( n + 1 ) × ( n + 2 ) 3 . =\dfrac{n\times(n+1)\times(n+2)}{3}. =3n×(n+1)×(n+2).
∴ 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + . . . + n × ( n + 1 ) = n × ( n + 1 ) × ( n + 2 ) 3 . \therefore 1\times2+2\times3+3\times4+4\times5+...+n\times(n+1)=\dfrac{n\times(n+1)\times(n+2)}{3}. ∴1×2+2×3+3×4+4×5+...+n×(n+1)=3n×(n+1)×(n+2).
数列 a n = n 2 + n , ( n ∈ N + ) a_n=n^2+n, (n\in N^+) an=n2+n,(n∈N+) 的前 n n n 项和 S n = n ( n + 1 ) ( n + 2 ) 3 S_n=\dfrac{n(n+1)(n+2)}{3} Sn=3n(n+1)(n+2).
原式 × 3 ÷ 3 原式\times3\div3 原式×3÷3 乘以3再除以3不是偶然,换成其他的数就不行
,因为
2 × 3 × ( 4 − 1 ) 2\times3\times(4-1) 2×3×(4−1)
左邻
− 1 × 2 × 3 + 2 × 3 × 4 -1\times2\times3+2\times3\times4 −1×2×3+2×3×4 右舍
: 左邻右舍裂差法求和,构造的这个数与该项乘开以后,正好能够左右与其他项消去。
也可以使用连续自然数的平方和公式快速求得结果:
∑ i = 1 n [ i × ( i + 1 ) ] = ∑ i = 1 n ( i 2 + i ) = ∑ i = 1 n i 2 + ∑ i = 1 n i = n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 1 ) 2 = n ( n + 1 ) ( n + 2 ) 3 \stackrel{n}{\sum\limits_{i=1}}[i\times(i+1)]=\stackrel{n}{\sum\limits_{i=1}}(i^2+i)=\stackrel{n}{\sum\limits_{i=1}}i^2+\stackrel{n}{\sum\limits_{i=1}}i=\dfrac{n(n+1)(2n+1)}{6}+\dfrac{n(n+1)}{2}=\dfrac{n(n+1)(n+2)}{3} i=1∑n[i×(i+1)]=i=1∑n(i2+i)=i=1∑ni2+i=1∑ni=6n(n+1)(2n+1)+2n(n+1)=3n(n+1)(n+2).
又如:数列 a n = n ( n + 1 ) ( n + 2 ) , ( n ∈ N + ) a_n=n(n+1)(n+2), (n\in N^+) an=n(n+1)(n+2),(n∈N+) 的前 n n n 项和
1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + 4 × 5 × 6 + . . . + n × ( n + 1 ) × ( n + 2 ) 1\times2\times3+2\times3\times4+3\times4\times5+4\times5\times6+...+n\times(n+1)\times(n+2) 1×2×3+2×3×4+3×4×5+4×5×6+...+n×(n+1)×(n+2)
= [ 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + 4 × 5 × 6 + . . . + n × ( n + 1 ) × ( n + 2 ) ] × 4 ÷ 4 =[1\times2\times3+2\times3\times4+3\times4\times5+4\times5\times6+...+n\times(n+1)\times(n+2)]\times4\div4 =[1×2×3+2×3×4+3×4×5+4×5×6+...+n×(n+1)×(n+2)]×4÷4
= n ( n + 1 ) ( n + 2 ) ( n + 3 ) 4 = \dfrac{n(n+1)(n+2)(n+3)}{4} =4n(n+1)(n+2)(n+3).
同样的道理:
对于数列 a n = 4 n 2 − 1 , ( n ∈ N + ) a_n=4n^2-1, (n\in N^+) an=4n2−1,(n∈N+) 的前 n n n 项和 S n S_n Sn 有:
S n = 1 × 3 + 3 × 5 + 5 × 7 + . . . + ( 2 n − 1 ) ( 2 n + 1 ) S_n=1\times3+3\times5+5\times7+...+(2n-1)(2n+1) Sn=1×3+3×5+5×7+...+(2n−1)(2n+1)
= [ 1 × 3 + 3 × 5 + 5 × 7 + . . . + ( 2 n − 1 ) ( 2 n + 1 ) ] × 6 ÷ 6 =[1\times3+3\times5+5\times7+...+(2n-1)(2n+1)]\times6\div6 =[1×3+3×5+5×7+...+(2n−1)(2n+1)]×6÷6
= 1 6 [ 1 × 3 × ( 5 + 1 ) + 3 × 5 × ( 7 − 1 ) + 5 × 7 × ( 9 − 3 ) + 7 × 9 × ( 11 − 5 ) + . . . + ( 2 n − 1 ) ( 2 n + 1 ) ( 2 n + 3 − 2 n ) ] =\dfrac{1}{6}[1\times3\times(5+1)+3\times5\times(7-1)+5\times7\times(9-3)+7\times9\times(11-5)+...+(2n-1)(2n+1)(2n+3-2n)] =61[1×3×(5+1)+3×5×(7−1)+5×7×(9−3)+7×9×(11−5)+...+(2n−1)(2n+1)(2n+3−2n)]
= 1 6 [ 1 × 3 + 1 × 3 × 5 − 1 × 3 × 5 + 3 × 5 × 7 − 3 × 5 × 7 + 5 × 7 × 9 − 5 × 7 × 9 + 7 × 9 × 11 − . . . + ( 2 n − 1 ) ( 2 n + 1 ) ( 2 n + 3 ) ] =\dfrac{1}{6}[1\times3+1\times3\times5-1\times3\times5+3\times5\times7-3\times5\times7+5\times7\times9-5\times7\times9+7\times9\times11-...+(2n-1)(2n+1)(2n+3)] =61[1×3+1×3×5−1×3×5+3×5×7−3×5×7+5×7×9−5×7×9+7×9×11−...+(2n−1)(2n+1)(2n+3)]
= 3 + ( 2 n − 1 ) ( 2 n + 1 ) ( 2 n + 3 ) 6 = n ( 4 n 2 + 6 n − 1 ) 3 =\dfrac{3+(2n-1)(2n+1)(2n+3)}{6}=\dfrac{n(4n^2+6n-1)}{3} =63+(2n−1)(2n+1)(2n+3)=3n(4n2+6n−1).
或者使用平方和公式直接得出结果:
∑ i = 1 n ( 4 i 2 − 1 ) = 4 ⋅ ∑ i = 1 n i 2 − n = 4 ⋅ n ( n + 1 ) ( 2 n + 1 ) 6 − n = n ( 4 n 2 + 6 n − 1 ) 3 \stackrel{n}{\sum\limits_{i=1}}(4i^2-1)=4·\stackrel{n}{\sum\limits_{i=1}}i^2-n=4·\dfrac{n(n+1)(2n+1)}{6}-n=\dfrac{n(4n^2+6n-1)}{3} i=1∑n(4i2−1)=4⋅i=1∑ni2−n=4⋅6n(n+1)(2n+1)−n=3n(4n2+6n−1).
对于数列 a n = 8 n 3 + 12 n 2 − 2 n − 3 , n ∈ N + a_n=8n^3+12n^2-2n-3, n\in N^+ an=8n3+12n2−2n−3,n∈N+ 的前 n n n 项和 S n S_n Sn 有:
S n = 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + . . . + ( 2 n − 1 ) ( 2 n + 1 ) ( 2 n + 3 ) S_n=1\times3\times5+3\times5\times7+5\times7\times9+...+(2n-1)(2n+1)(2n+3) Sn=1×3×5+3×5×7+5×7×9+...+(2n−1)(2n+1)(2n+3)
= [ 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + . . . + ( 2 n − 1 ) ( 2 n + 1 ) ( 2 n + 3 ) ] × 8 ÷ 8 =[1\times3\times5+3\times5\times7+5\times7\times9+...+(2n-1)(2n+1)(2n+3)]\times8\div8 =[1×3×5+3×5×7+5×7×9+...+(2n−1)(2n+1)(2n+3)]×8÷8
= 1 8 ⋅ [ 1 × 3 × 5 × ( 7 + 1 ) + 3 × 5 × 7 × ( 9 − 1 ) + 5 × 7 × 9 × ( 11 − 3 ) + . . . + ( 2 n − 1 ) ( 2 n + 1 ) ( 2 n + 3 ) ( 2 n + 5 − 2 n + 3 ) ] =\dfrac{1}{8}·[1\times3\times5\times(7+1)+3\times5\times7\times(9-1)+5\times7\times9\times(11-3)+...+(2n-1)(2n+1)(2n+3)(2n+5-2n+3)] =81⋅[1×3×5×(7+1)+3×5×7×(9−1)+5×7×9×(11−3)+...+(2n−1)(2n+1)(2n+3)(2n+5−2n+3)]
= 1 8 ⋅ [ 15 + ( 2 n − 1 ) ( 2 n + 1 ) ( 2 n + 3 ) ( 2 n + 5 ) ] =\dfrac{1}{8}·[15+(2n-1)(2n+1)(2n+3)(2n+5)] =81⋅[15+(2n−1)(2n+1)(2n+3)(2n+5)]
= 2 n 4 + 8 n 3 + 7 n 2 − 2 n =2n^4+8n^3+7n^2-2n =2n4+8n3+7n2−2n.
从以上结果中可以推出 连续自然数的立方和公式:
∑ i = 1 n ( 8 i 3 + 12 i 2 − 2 i − 3 ) = 8 ⋅ ∑ i = 1 n i 3 + 12 ⋅ ∑ i = 1 n i 2 − 2 ⋅ ∑ i = 1 n i − 3 n \stackrel{n}{\sum\limits_{i=1}}(8i^3+12i^2-2i-3)=8·\stackrel{n}{\sum\limits_{i=1}}i^3+12·\stackrel{n}{\sum\limits_{i=1}}i^2-2·\stackrel{n}{\sum\limits_{i=1}}i-3n i=1∑n(8i3+12i2−2i−3)=8⋅i=1∑ni3+12⋅i=1∑ni2−2⋅i=1∑ni−3n
= 8 ⋅ ∑ i = 1 n i 3 + 12 ⋅ n ( n + 1 ) ( 2 n + 1 ) 6 − 2 ⋅ n ( n + 1 ) 2 − 3 n =8·\stackrel{n}{\sum\limits_{i=1}}i^3+12·\dfrac{n(n+1)(2n+1)}{6}-2·\dfrac{n(n+1)}{2}-3n =8⋅i=1∑ni3+12⋅6n(n+1)(2n+1)−2⋅2n(n+1)−3n
= 2 n 4 + 8 n 3 + 7 n 2 − 2 n =2n^4+8n^3+7n^2-2n =2n4+8n3+7n2−2n
∑ i = 1 n i 3 = 1 8 ⋅ [ ( 2 n 4 + 8 n 3 + 7 n 2 − 2 n ) − 2 n ( n + 1 ) ( 2 n + 1 ) + n ( n + 1 ) + 3 n ] = n 4 + 2 n 3 + n 2 4 = [ n ( n + 1 ) 2 ] 2 \stackrel{n}{\sum\limits_{i=1}}i^3=\dfrac{1}{8}·[(2n^4+8n^3+7n^2-2n)-2n(n+1)(2n+1)+n(n+1)+3n]=\dfrac{n^4+2n^3+n^2}{4}=[\dfrac{n(n+1)}{2}]^2 i=1∑ni3=81⋅[(2n4+8n3+7n2−2n)−2n(n+1)(2n+1)+n(n+1)+3n]=4n4+2n3+n2=[2n(n+1)]2.
∴ \therefore ∴ 连续自然数的立方和公式为: ∑ i = 1 n i 3 = n 4 + 2 n 3 + n 2 4 = [ n ( n + 1 ) 2 ] 2 \stackrel{n}{\sum\limits_{i=1}}i^3=\dfrac{n^4+2n^3+n^2}{4}=[\dfrac{n(n+1)}{2}]^2 i=1∑ni3=4n4+2n3+n2=[2n(n+1)]2.
相关文章:
左邻右舍裂差法求和 以及 连续自然数的立方和公式
左邻右舍裂差法求和 1 2 2 3 3 4 4 5 . . . n ( n 1 ) ? 1\times22\times33\times44\times5...n\times(n1)? 12233445...n(n1)? 看成数列 a n n 2 n , ( n ∈ N ) a_nn^2n, (n\in N^) ann2n,(n∈N) 的前 n n n 项和 S n S_n Sn. 原理:将…...

阿里云故障洞察提效 50%,全栈可观测建设有哪些技术要点?
本文根据作者在「TakinTalks 稳定性社区 」公开分享整理而成 #一分钟精华速览# 全栈可观测是一种更全面、更综合和更深入的观测能力,能协助全面了解和监测系统的各个层面和组件,它不仅仅是一个技术上的概念,更多地是技术与业务的结合。在“…...

docker run 命令30个常用参数详解
文章目录 0.前言docker run 命令示例 2.Docker run 多种用法知其然知其所以然1. 基本用法2. 启动交互式容器3. 映射端口4. 挂载文件/目录5. 设置环境变量6. 指定容器名称7. 后台运行容器8. 重启策略9. 其他参数 2. docker run 命令参数详解1. -d:以后台模式…...
[kali]kali linux镜像下载地址
百度网盘地址 链接:https://pan.baidu.com/s/1cxySSyQdLIkox-w_CSka4Q 提取码:cevu 官方下载合集 https://www.kali.org/downloads/(所有版本) 独立链接: 2020.3版本 64位:https://cdimage.kali.org/kali-2020.…...

考研408 | 【操作系统】操作系统的概述
操作系统的概念和功能 导图 操作系统的功能和目标 1.作为系统资源的管理者 2.向上层提供方便易用的服务 3.作为最接近硬件的层次 操作系统的特征 导图 并发 并发VS并行 共享 并发和共享的关系 虚拟 异步 操作系统的发展和分类 导图 1.手工操作 2.批处理阶段--单道批处理系统…...
VM部署CentOS并且设置网络
最近在准备学习k8s,需要部署服务器,所以需要在虚拟机中部署centOS服务,下面是在虚拟机中部署CentOs服务。 其中VM地址在下面 链接:https://pan.baidu.com/s/1hSKr5RfwsabdzNOvHmZ5kw?pwdkys5 提取码:kys5 其中Cent…...

多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测
多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测,KOA-…...

深入Redis线程模型
目录 1.前言 2.Redis为什么快? 3.Redis 为何选择单线程? 3.1可维护性 3.2并发处理 3.3性能瓶颈 4.Reactor设计模式 5.Redis4.0前 单线程模型 - Event Loop 6.Redis4.0后 多线程异步任务 7.Redis6.0后 多线程网络模型 1.前言 这篇文章我们主要围绕…...

idea cannot download sources 解决方法
问题 点击class文件右上角下载源码失败 解决方案 找到idea terminal 控制台cd 至maven工程执行 mvn dependency:resolve -Dclassifiersources...

CS:GO升级 Linux不再是“法外之地”
在前天的VAC大规模封禁中,有不少Linux平台的作弊玩家也迎来了“迟到”的VAC封禁。 一直以来,Linux就是VAC封禁的法外之地。虽然大部分玩家都使用Windows平台进行游戏。但实际上,使用Linux畅玩CS:GO的玩家也不在少数。 以前V社主要打击W…...
手写spring笔记
手写spring笔记 《Spring 手撸专栏》笔记 IoC部分 Bean初始化和属性注入 Bean的信息封装在BeanDefinition中 /*** 用于记录Bean的相关信息*/ public class BeanDefinition {/*** Bean对象的类型*/private Class beanClass;/*** Bean对象中的属性信息*/private PropertyVal…...

shell的两种属性: 交互(interactive)与登录(login)
1. 背景 在看shell变量的时候引起了兴趣: 局部变量,全局变量,环境变量,shell的配置文件,参考博客: http://c.biancheng.net/view/773.html 2. 交互式与非交互式 参考博客: shell的两个属性:是否交互式(interactive), 是否登录…...

实现简单的element-table的拖拽效果
第一步,先随便创建element表格 <el-table ref"dragTable" :data"tableData" style"width: 100%" border fit highlight-current-row><el-table-column label"日期" width"180"><template slot-sc…...

Web网页浏览器远程访问jupyter notebook服务器【内网穿透】
文章目录 前言1. Python环境安装2. Jupyter 安装3. 启动Jupyter Notebook4. 远程访问4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5. 固定公网地址 前言 Jupyter Notebook,它是一个交互式的数据科学和计算环境,支持多种编程语言,如…...

干翻Dubbo系列第十一篇:Dubbo常见协议与通信效率对比
文章目录 文章说明 一:协议 1:什么是协议 2:协议和序列化关系 3:协议组成 (一):头信息 (二):体信息 4:Dubbo3中常见的协议 5:…...

春秋云镜 CVE-2020-17530
春秋云镜 CVE-2020-17530 S2-061 靶标介绍 对CVE-2019-0230的绕过,Struts2官方对CVE-2019-0230的修复方式是加强OGNL表达式沙盒,而CVE-2020-17530绕过了该沙盒。当对标签属性中的原始用户输入进行评估时,强制 OGNL 评估可能会导致远程代码执…...

【java毕业设计】基于Spring Boot+Vue+mysql的论坛管理系统设计与实现(程序源码)-论坛管理系统
基于Spring BootVuemysql的论坛管理系统设计与实现(程序源码毕业论文) 大家好,今天给大家介绍基于Spring BootVuemysql的论坛管理系统设计与实现,本论文只截取部分文章重点,文章末尾附有本毕业设计完整源码及论文的获取…...

华为在ospf area 0单区域的情况下结合pbr对数据包的来回路径进行控制
配置思路: 两边去的包在R1上用mqc进行下一跳重定向 两边回程包在R4上用mqc进行下一跳重定向 最终让内网 192.168.10.0出去的数据包来回全走上面R-1-2-4 192.168.20.0出去的数据包来回全走 下面R1-3-4 R2和R3就是简单ospf配置和宣告,其它没有配置&#…...

PyQt5登录界面跳转
目录 1、设计ui界面 2、设计逻辑代码,实现登录界面跳转 3、结果 1、设计ui界面 设计后的ui界面 在这里可以设置密码不显示 这里可以设置快捷键 最后将ui界面转为py文件后获得的逻辑代码为:(文件名为Login.py) # -*- coding: u…...
git add 用法
git add 是 Git 的一个命令,用于将更改的文件加入到暂存区(staging area),准备提交这些更改。以下是该命令的常见用法: 添加单个文件 git add 文件名添加多个文件 git add 文件名1 文件名2 ...添加所有当前目录下的更改…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...