当前位置: 首页 > news >正文

高光谱 | 矿物识别和分类标签数据制作、农作物病虫害数据分类、土壤有机质含量回归与制图、木材含水量评估和制图

本课程提供一套基于Python编程工具的高光谱数据处理方法和应用案例。

本课程涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心,用通俗易懂的语言解释高光谱的基本概念和理论,旨在帮助学员深入理解科学原理。方法篇结合Python编程工具,专注于解决高频技术难题,通过复现高光谱数据处理和分析过程,并解析代码,提供高效反馈,使学员掌握实践技巧。实践篇通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。通过4个应用场景和12个实践案例,学员将能够提升高光谱技术的应用水平。此外,还提供机器学习的系统课程,帮助学员建立个性化的高光谱遥感机器学习知识体系和方法指南。

课程深入探讨了高光谱成像,涵盖了基本概念、成像原理、数据处理和分析方法,以及运用机器学习和深度学习模型提取和应用高光谱信息的技术。此外,通过Python实践练习,课程帮助学员巩固所学知识,使其得以深入理解与实践。

这门课程适合对高光谱技术感兴趣,并希望通过Python进行实践的任何人。

学习课程,你将获得:

1.全套的高光谱数据处理方法和应用案例(包含python源码)

2.高光谱与机器学习结合的系统化解决方案

3.最新的技术突破讲解和复现代码

4.科研项目实践和学习方法的专题分享

5.高光谱数据预处理-机器学习-深度学习-图像分类-参数回归等12个专题练习

高光谱遥感信息对于我们认识世界具有重要意义。尽管大部分物质在人眼中看似无异,然而高光谱遥感的观察下,它们呈现出独特的"光谱特征"。这种能够窥见事物的"本质"能力具备着革命性的潜能,对精准农业、地球观测、艺术分析和医学等领域带来巨大的影响。通过通俗易懂的课程,我们希望能够让您更加深入地了解和掌握高光谱的知识与技术。愿您在学习的道路上获得愉悦,并汲取丰盛的收获!

Python高光谱遥感数据处理与高光谱遥感机器学习方法深度应用

第一章、高光谱基础

第一课:高光谱遥感基本概念

01)高光谱遥感

02)光的波长

03)光谱分辨率

04)高光谱遥感的历史和发展

​第二课:高光谱传感器与数据获取

01)高光谱遥感成像原理与传感器

02)卫星高光谱数据获取

03)机载(无人机)高光谱数据获取

04)地面光谱数据获取

05)构建光谱库

​第三课:高光谱数据预处理

01)图像的物理意义

02)数字量化图像(DN值)

03)辐射亮度数据

04)反射率

05)辐射定标

06大气校正

练习1:

资源02D高光谱卫星数据辐射定标与大气校正

​第四课:高光谱分析

01)光谱特征分析

02)高光谱图像分类

03)高光谱地物识别

04)高光谱混合像元分解

练习2

(1)使用DISPEC 对光谱库数据进行光谱吸收特征分析

(2)使用ENVI的沙漏程序对资源02D高光谱卫星数据进行混合像元分解。

第五课:高光谱应用

01)植被调查

02)水质监测

03)岩石、矿物

04)土壤

​第二章、高光谱开发基础(Python)

第一课:Python编程介绍

01)Python简介

02)变量和数据类型

03)控制结构

04)功能和模块

05)文件、包、环境

练习3

(1)python基础语法练习

(2)文件读写练习

(3)包的创建导入练习

​第二课:Python空间数据处理

01)空间数据Python处理介绍

02)矢量数据处理

03)栅格数据处理

练习4

(1)python矢量数据处理练习

(2)python栅格处理练习

​第三课:python 高光谱数据处理

01)数据读取

02)数据预处理

03)光谱特征提取

04)混合像元分解

练习5

(1)高光谱数据读取

(2)高光谱数据预处理

(3)光谱特征提取

(4)混合像元分解

​第三章、高光谱机器学习技术(python)

第一课:机器学习概述与python实践

01)机器学习与sciki learn 介绍

02)数据和算法选择

03)通用学习流程

04)数据准备

05)模型性能评估

06)机器学习模型

练习6

机器学习sciki learn练习

第二课:深度学习概述与python实践

01)深度学习概述

02)深度学习框架

03)pytorch开发基础-张量

04)pytorch开发基础-神经网络

05)卷积神经网络

06)手写数据识别

07)图像识别

练习7

(1)深度学习pytorch基础练习

(2)手写数字识别与图像分类练习

​第三课:高光谱深度学习机器学习实践

01)高光谱图像分类机器学习实践

02)卷积神经网络(CNN)在高光谱数据分析中的应用

03)循环神经网络(RNN)在高光谱数据分析中的应用

练习8

(1)高光谱深度学习练习

(2)使用自己数据测试02)深度学习框架

​第四章、典型案例操作实践

第一课:矿物填图案例

01)岩矿光谱机理

02)基于光谱特征的分析方法

03)混合像元分解的分析方法

04)矿物识别机器学习分析方法

05)矿物分类图深度学习方法

练习9

(1)矿物高光谱混合像元分解练习

(2)矿物识别和分类标签数据制作

(3)矿物分类图深度学习方法

​第二课:农业应用案例

01)植被光谱机理

02)农作物病虫害分类

03)农作物分类深度学习实践

练习10

(1)农作物病虫害数据分类

(2)农作物分类深度学习练习

第三课:土壤质量评估案例

01)土壤光谱机理

02)土壤质量调查

03)土壤含水量光谱评估方法

04)土壤有机质含量评估与制图

练习11

(1)基于9种机器学习模型的土壤水分含量回归

(2)土壤有机质含量回归与制图

​第四课:木材含水率评估案例

01)高光谱无损检测

02)木材无损检测

03)高光谱木材含水量评估

练习12

木材含水量评估和制图

​总结与答疑

课程回顾与总结

交流答疑

最新技术介绍和讨论

ArcGIS Pro技术应用(暨基础入门、制图、空间分析、影像分析、三维建模、空间统计分析与建模、python融合、案例应用)

高光谱遥感数值建模技术及在植被、水体、土壤信息提取

Matlab高光谱遥感数据处理与混合像元分解实践技术应用

无人机遥感在农林信息提取中的实现方法与GIS融合应用高级课程

无人机遥感图像拼接及处理实践技术专题课程

遥感影像信息提取与案例分析实践技术应用专题

相关文章:

高光谱 | 矿物识别和分类标签数据制作、农作物病虫害数据分类、土壤有机质含量回归与制图、木材含水量评估和制图

本课程提供一套基于Python编程工具的高光谱数据处理方法和应用案例。 本课程涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心,用通俗易懂的语言解释高光谱的基本概念和理论,旨在帮助学员深入理解科学原理。方法篇结合Python编程工具,…...

【数据结构】二叉树篇| 纲领思路01+刷题

博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: 是瑶瑶子啦每日一言🌼: 所谓自由,不是随心所欲,而是自我主宰。——康德 目录 一、二叉树刷题纲领二、刷题1、104. 二叉树的最大深度2、 二叉…...

系统架构设计师---计算机基础知识之数据库系统结构与规范化

目录 一、基本概念 二、 数据库的结构 三、常用的数据模型 概念数据模型...

PyCharm连接Docker中的容器(ubuntu)

一、为什么要用Pycharm链接Docker中的ubuntu 因为在进行深度学习的时候,基于windows系统在开发的过程中,老是出现很多问题,大多数是环境问题。 尽管安装了Conda,也不能很好的解决问题,使用ubuntu是最好的选择。 二、…...

安防视频汇聚平台EasyCVR视频监控综合管理平台H.265转码功能更新,新增分辨率配置的具体步骤

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求,让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上,视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…...

全平台数据(数据库)管理工具 DataCap 管理 Rainbond 上的所有数据库

DataCap是用于数据转换、集成和可视化的集成软件,支持多种数据源、文件类型、大数据相关数据库、关系数据库、NoSQL数据库等。通过该 DataCap 可以实现对多个数据源的管理,对数据源下的数据进行各种操作转换,制作数据图表,监控数据…...

“深入探究JVM内部机制:从字节码到实际执行“

标题:深入探究JVM内部机制:从字节码到实际执行 摘要:本文将深入探究Java虚拟机(JVM)的内部机制,从字节码的生成、类加载、字节码解释和即时编译等环节,详细介绍JVM是如何将Java程序的字节码转化…...

C++写文件,直接写入结构体

C写文件,直接写入结构体 以前写文件都是写入字符串或者二进制再或者就是一些配置文件,今天介绍一下直接写入结构体,可以在软件参数较多的时候直接进行读写,直接将整个结构体写入和读取,看代码: #include&…...

【Spring专题】Spring之Bean的生命周期源码解析——阶段二(二)(IOC之属性填充/依赖注入)

目录 前言阅读准备阅读指引阅读建议 课程内容一、依赖注入方式(前置知识)1.1 手动注入1.2 自动注入1.2.1 XML的autowire自动注入1.2.1.1 byType:按照类型进行注入1.2.1.2 byName:按照名称进行注入1.2.1.3 constructor:…...

线程|线程的使用、四种实现方式

1.线程的实现方式 1.用户级线程 开销小,用户空间就可以创建多个。缺点是:内核无法感知用户级多个线程的存在,把其当作只有一个线程,所以只会提供一个处理器。 2.内核级线程 相对于用户级开销稍微大一点,可以利用多…...

Facebook 应用未启用:这款应用目前无法使用,应用开发者已得知这个问题。

错误:Facebook 应用未启用:这款应用目前无法使用,应用开发者已得知这个问题。应用重新启用后,你便能登录。 「应用未经过审核或未发布」: 如果一个应用还没有经过Facebook的审核或者开发者尚未将应用发布,那么它将无法…...

(十八)大数据实战——Hive的metastore元数据服务安装

前言 Hive的metastore服务作用是为Hive CLI或者Hiveserver2提供元数据访问接口。Hive的metastore 是Hive元数据的存储和管理组件,它负责管理 Hive 表、分区、列等元数据信息。元数据是描述数据的数据,它包含了关于表结构、存储位置、数据类型等信息。本…...

ubuntu 22.04 LTS 在 llvm release/17.x 分支上编译 cookbook llvm example Chapter 02

一,从源码编译 llvm 下载源码: $ git clone https://github.com/llvm/llvm-project.git 创建 对应 commit id分支: $ cd llvm-project $ git checkout 5b78868661f42a70fa30 -b 17.x.greater 源码成功编译 llvm-project commit id&…...

【仿写tomcat】三、通过socket读取http请求信息

仿写tomcat 建立Socket连接获取连接信息查看HTTP信息 建立Socket连接 这里我们也是创建一个专门管理socket的类 package com.tomcatServer.socket;import java.io.*; import java.net.ServerSocket;/*** 套接字存储** author ez4sterben* date 2023/08/15*/ public class Soc…...

Hive的窗口函数与行列转换函数及JSON解析函数

1. 系统内置函数 查看系统内置函数:show functions ; 显示内置函数的用法: desc function lag; – lag为函数名 显示详细的内置函数用法: desc function extended lag; 1.1 行转列 行转列是指多行数据转换为一个列的字段。 Hive行转列用到的函数 con…...

CSS中的z-index属性有什么作用?如何控制元素在层叠上下文中的显示顺序?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ z-index 属性的作用及控制元素层叠顺序作用 ⭐ 控制元素层叠顺序⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff0…...

c语言——字符转ASCLL码

//字符转ASCLL码 #include<stdio.h> #include<stdlib.h> int main() {char c;printf("输入字符&#xff1a;");scanf("%c",&c);printf(" %c 的ASCLL为: %d \n",c,c);system("pause");return 0;}...

ardupilot开发 --- 安装与调参篇

解锁电机前的安全检查 Pre-arm Safety Checks 安全检查包括&#xff1a;是否未校准、配置或传感器数据是否正确等等&#xff0c;某一项不通过则不允许解锁电机&#xff1b; 目的&#xff1a;防止炸机&#xff1b; 如何禁用这些安全检查&#xff1f;配置 ARMING_CHECK&#xff…...

BC108 矩阵交换

描述 KiKi有一个矩阵&#xff0c;他想知道经过k次行变换或列变换后得到的矩阵。请编程帮他解答。 输入描述 第一行包含两个整数n和m&#xff0c;表示一个矩阵包含n行m列&#xff0c;用空格分隔。 (1≤n≤10,1≤m≤10) 从2到n1行&#xff0c;每行输入m个整数&#xff08;范围-…...

如何发现系统改进点,优化点,提高点,新系统 边界感不要太强

技术人员规划能力&#xff0c;如何规划新的系统_技术规划能力_个人渣记录仅为自己搜索用的博客-CSDN博客 1. 协作中, 双方系统对接, 边界感不要太强. 肯定会不爽, 不爽的点里可以挖掘改进点 肯定会有很多冲突,对方技能欠缺, 对方耽误你的时间, 可以想下有没有什么方案是可…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...