神经网络基础-神经网络补充概念-25-深层神经网络
简介
深层神经网络(Deep Neural Network,DNN)是一种具有多个隐藏层的神经网络,它可以用来解决复杂的模式识别和特征学习任务。深层神经网络在近年来的机器学习和人工智能领域中取得了重大突破,如图像识别、自然语言处理、语音识别等。
重要概念
多隐藏层:
深层神经网络具有多个隐藏层,这些隐藏层可以用来提取不同层次的特征。每一层的神经元可以将前一层的输出作为输入,并对数据进行更高级的抽象和特征学习。
特征学习:
深层神经网络通过逐层的特征学习,可以自动地从原始数据中提取出更加抽象和有意义的特征。每一层的权重和偏差都在训练过程中进行调整,以便更好地捕捉数据中的模式和信息。
非线性激活函数:
深层神经网络使用非线性的激活函数(如ReLU、Sigmoid、Tanh等)来引入非线性变换,从而使网络能够处理更加复杂的关系和模式。
前向传播和反向传播:
深层神经网络的训练过程包括前向传播和反向传播。前向传播用于计算预测值,并计算损失函数,而反向传播用于计算梯度并更新权重和偏差,以减小损失函数。
优化算法:
训练深层神经网络通常使用各种优化算法,如梯度下降法、随机梯度下降法、Adam等。这些算法有助于寻找损失函数的最小值,并使网络的性能逐渐提升。
过拟合问题:
深层神经网络容易出现过拟合问题,特别是在数据量较少的情况下。为了避免过拟合,常常会采用正则化、Dropout等技术。
深度学习框架:
为了便于搭建和训练深层神经网络,许多深度学习框架(如TensorFlow、PyTorch、Keras等)被开发出来,提供了丰富的工具和接口来支持深度神经网络的构建和训练。
代码实现
import numpy as np# Sigmoid 激活函数及其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return x * (1 - x)# 初始化参数
def initialize_parameters(layer_dims):parameters = {}L = len(layer_dims) # 层数for l in range(1, L):parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))return parameters# 前向传播
def forward_propagation(X, parameters):caches = []A = XL = len(parameters) // 2 # 神经网络层数for l in range(1, L):Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)]A = sigmoid(Z)caches.append((Z, A))Z = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)]AL = sigmoid(Z)caches.append((Z, AL))return AL, caches# 计算损失
def compute_loss(AL, Y):m = Y.shape[1]cost = -np.sum(Y * np.log(AL) + (1 - Y) * np.log(1 - AL)) / mreturn cost# 反向传播
def backward_propagation(AL, Y, caches):grads = {}L = len(caches)m = AL.shape[1]Y = Y.reshape(AL.shape)dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))current_cache = caches[L - 1]dZL = dAL * sigmoid_derivative(current_cache[1])grads['dW' + str(L)] = np.dot(dZL, caches[L - 2][1].T) / mgrads['db' + str(L)] = np.sum(dZL, axis=1, keepdims=True) / mfor l in reversed(range(L - 1)):current_cache = caches[l]dZ = np.dot(parameters['W' + str(l + 2)].T, dZL) * sigmoid_derivative(current_cache[1])grads['dW' + str(l + 1)] = np.dot(dZ, caches[l][1].T) / mgrads['db' + str(l + 1)] = np.sum(dZ, axis=1, keepdims=True) / mdZL = dZreturn grads# 更新参数
def update_parameters(parameters, grads, learning_rate):L = len(parameters) // 2for l in range(L):parameters['W' + str(l + 1)] -= learning_rate * grads['dW' + str(l + 1)]parameters['b' + str(l + 1)] -= learning_rate * grads['db' + str(l + 1)]return parameters# 主函数
def deep_neural_network(X, Y, layer_dims, learning_rate, num_iterations):np.random.seed(42)parameters = initialize_parameters(layer_dims)for i in range(num_iterations):AL, caches = forward_propagation(X, parameters)cost = compute_loss(AL, Y)grads = backward_propagation(AL, Y, caches)parameters = update_parameters(parameters, grads, learning_rate)if i % 100 == 0:print(f'Iteration {i}, Cost: {cost:.4f}')return parameters# 示例数据
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).T
Y = np.array([[0, 1, 1, 0]]).T# 定义网络结构和超参数
layer_dims = [2, 4, 4, 1] # 输入层维度、隐藏层维度、输出层维度
learning_rate = 0.1
num_iterations = 10000# 训练深层神经网络
parameters = deep_neural_network(X, Y, layer_dims, learning_rate, num_iterations)# 预测
predictions, _ = forward_propagation(X, parameters)
print('Predictions:', predictions)相关文章:
神经网络基础-神经网络补充概念-25-深层神经网络
简介 深层神经网络(Deep Neural Network,DNN)是一种具有多个隐藏层的神经网络,它可以用来解决复杂的模式识别和特征学习任务。深层神经网络在近年来的机器学习和人工智能领域中取得了重大突破,如图像识别、自然语言处…...
MySQL— 基础语法大全及操作演示!!!(上)
MySQL—— 基础语法大全及操作演示(上) 一、MySQL概述1.1 、数据库相关概念1.1.1 MySQL启动和停止 1.2 、MySQL 客户端连接1.3 、数据模型 二、SQL2.1、SQL通用语法2.2、SQL分类2.3、DDL2.3.1 DDL — 数据库操作2.3.1 DDL — 表操作 2.4、DML2.4.1 DML—…...
[golang gin框架] 46.Gin商城项目-微服务实战之后台Rbac客户端调用微服务权限验证以及Rbac微服务数据库抽离
一. 根据用户的权限动态显示左侧菜单微服务 1.引入 后台Rbac客户端调用微服务权限验证功能主要是: 登录后显示用户名称、根据用户的权限动态显示左侧菜单,判断当前登录用户的权限 、没有权限访问则拒绝,参考[golang gin框架] 14.Gin 商城项目-RBAC管理,该微服务功能和上一节[g…...
域名和ip的关系
域名和ip的关系 一:什么是域名 域名,简称域名、网域,是由一串用点分隔的名字组成的上某一台计算机或计算机组的名称,用于在数据传输时标识 计算机的电子方位(有时也指地理位置)。网域名称系统,有时也简称为域名…...
excel日期函数篇1
1、DAY(serial_number):返回序列数表示的某月的天数 在括号内给出一个时间对象或引用一个时间对象(年月日),返回多少日 下面结果都为20 2、MONTH(serial_number):返回序列数表示的某年的月份 在括号内给出一个时间对…...
Leetcode151 翻转字符串中的单词
给你一个字符串 s ,请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。 注意:输入字符串 s中可能会存在前导空格、尾随空格…...
PHP FTP的相关函数及简单使用示例
简介 FTP是ARPANet的标准文件传输协议,该网络就是现今Internet的前身。 PHP FTP函数是通过文件传输协议提供对文件服务器的客户端访问,FTP函数用于打开、登陆以及关闭连接,也用于上传、下载、重命名、删除以及获取服务器上文件信息。 安装 …...
高光谱 | 矿物识别和分类标签数据制作、农作物病虫害数据分类、土壤有机质含量回归与制图、木材含水量评估和制图
本课程提供一套基于Python编程工具的高光谱数据处理方法和应用案例。 本课程涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心,用通俗易懂的语言解释高光谱的基本概念和理论,旨在帮助学员深入理解科学原理。方法篇结合Python编程工具,…...
【数据结构】二叉树篇| 纲领思路01+刷题
博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: 是瑶瑶子啦每日一言🌼: 所谓自由,不是随心所欲,而是自我主宰。——康德 目录 一、二叉树刷题纲领二、刷题1、104. 二叉树的最大深度2、 二叉…...
系统架构设计师---计算机基础知识之数据库系统结构与规范化
目录 一、基本概念 二、 数据库的结构 三、常用的数据模型 概念数据模型...
PyCharm连接Docker中的容器(ubuntu)
一、为什么要用Pycharm链接Docker中的ubuntu 因为在进行深度学习的时候,基于windows系统在开发的过程中,老是出现很多问题,大多数是环境问题。 尽管安装了Conda,也不能很好的解决问题,使用ubuntu是最好的选择。 二、…...
安防视频汇聚平台EasyCVR视频监控综合管理平台H.265转码功能更新,新增分辨率配置的具体步骤
安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求,让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上,视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…...
全平台数据(数据库)管理工具 DataCap 管理 Rainbond 上的所有数据库
DataCap是用于数据转换、集成和可视化的集成软件,支持多种数据源、文件类型、大数据相关数据库、关系数据库、NoSQL数据库等。通过该 DataCap 可以实现对多个数据源的管理,对数据源下的数据进行各种操作转换,制作数据图表,监控数据…...
“深入探究JVM内部机制:从字节码到实际执行“
标题:深入探究JVM内部机制:从字节码到实际执行 摘要:本文将深入探究Java虚拟机(JVM)的内部机制,从字节码的生成、类加载、字节码解释和即时编译等环节,详细介绍JVM是如何将Java程序的字节码转化…...
C++写文件,直接写入结构体
C写文件,直接写入结构体 以前写文件都是写入字符串或者二进制再或者就是一些配置文件,今天介绍一下直接写入结构体,可以在软件参数较多的时候直接进行读写,直接将整个结构体写入和读取,看代码: #include&…...
【Spring专题】Spring之Bean的生命周期源码解析——阶段二(二)(IOC之属性填充/依赖注入)
目录 前言阅读准备阅读指引阅读建议 课程内容一、依赖注入方式(前置知识)1.1 手动注入1.2 自动注入1.2.1 XML的autowire自动注入1.2.1.1 byType:按照类型进行注入1.2.1.2 byName:按照名称进行注入1.2.1.3 constructor:…...
线程|线程的使用、四种实现方式
1.线程的实现方式 1.用户级线程 开销小,用户空间就可以创建多个。缺点是:内核无法感知用户级多个线程的存在,把其当作只有一个线程,所以只会提供一个处理器。 2.内核级线程 相对于用户级开销稍微大一点,可以利用多…...
Facebook 应用未启用:这款应用目前无法使用,应用开发者已得知这个问题。
错误:Facebook 应用未启用:这款应用目前无法使用,应用开发者已得知这个问题。应用重新启用后,你便能登录。 「应用未经过审核或未发布」: 如果一个应用还没有经过Facebook的审核或者开发者尚未将应用发布,那么它将无法…...
(十八)大数据实战——Hive的metastore元数据服务安装
前言 Hive的metastore服务作用是为Hive CLI或者Hiveserver2提供元数据访问接口。Hive的metastore 是Hive元数据的存储和管理组件,它负责管理 Hive 表、分区、列等元数据信息。元数据是描述数据的数据,它包含了关于表结构、存储位置、数据类型等信息。本…...
ubuntu 22.04 LTS 在 llvm release/17.x 分支上编译 cookbook llvm example Chapter 02
一,从源码编译 llvm 下载源码: $ git clone https://github.com/llvm/llvm-project.git 创建 对应 commit id分支: $ cd llvm-project $ git checkout 5b78868661f42a70fa30 -b 17.x.greater 源码成功编译 llvm-project commit id&…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...
