用pytorch实现google net
GoogleNet(也称为Inception v1)是由Google在2014年提出的一个深度卷积神经网络架构。它在ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014比赛中取得了优秀的成绩,并引起了广泛的关注。
GoogleNet的设计目标是构建一个更深的网络架构,以提高准确性,并通过减少网络参数的数量来降低过拟合的风险。它采用了"Inception"模块,其中包含多个并行的卷积层和池化层,这使得网络能够同时捕捉不同尺度的特征。
Inception模块通过使用不同大小的卷积核和池化操作,可以在不同的感受野尺度上提取特征。这样的设计允许网络在不同层级上学习到更具判别力的特征,并且不会对图像进行显式的尺度改变或池化。此外,为了减少计算量和参数数量,Inception模块还引入了1x1卷积核,用于降低通道的维度。
整个GoogleNet架构包含多个堆叠的Inception模块,并通过使用池化层和丢弃层来减小特征图的尺寸和防止过拟合。最后,全连接层用于输出最终的分类结果。
GoogleNet的创新点在于其深度和复杂度,并且采用了多个Inception模块的并行组合,使得模型能够同时学习到不同尺度和层次的特征。这使得GoogleNet在图像分类等计算机视觉任务中表现出色,并为后续网络架构的发展提供了启示。
1Inception结构
在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。这很可能得名于电影《盗梦空间》(Inception),因为电影中的一句话“我们需要走得更深”(“We need to go deeper”)。引入Inception结构(融入不同尺度的特征信息,即融合不同尺寸的感受野)
2、使用1x1的卷积核进行降维以及映射处理
3、整体网络结构
import torch
import torch.nn as nn# 定义Inception模块
class InceptionModule(nn.Module):def __init__(self, in_channels, out1x1, reduce3x3, out3x3, reduce5x5, out5x5, out1x1pool):super(InceptionModule, self).__init__()self.branch1 = nn.Sequential(nn.Conv2d(in_channels, out1x1, kernel_size=1),nn.ReLU(inplace=True))self.branch2 = nn.Sequential(nn.Conv2d(in_channels, reduce3x3, kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(reduce3x3, out3x3, kernel_size=3, padding=1),nn.ReLU(inplace=True))self.branch3 = nn.Sequential(nn.Conv2d(in_channels, reduce5x5, kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(reduce5x5, out5x5, kernel_size=5, padding=2),nn.ReLU(inplace=True))self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels, out1x1pool, kernel_size=1),nn.ReLU(inplace=True))def forward(self, x):out1 = self.branch1(x)out2 = self.branch2(x)out3 = self.branch3(x)out4 = self.branch4(x)out = torch.cat([out1, out2, out3, out4], 1)return out# 定义GoogLeNet模型
class GoogLeNet(nn.Module):def __init__(self, num_classes=10):super(GoogLeNet, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True))self.conv2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(64, 192, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True))self.inception1 = InceptionModule(192, 64, 96, 128, 16, 32, 32)self.inception2 = InceptionModule(256, 128, 128, 192, 32, 96, 64)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.inception3 = nn.Sequential(InceptionModule(480, 192, 96, 208, 16, 48, 64),InceptionModule(512, 160, 112, 224, 24, 64, 64),InceptionModule(512, 128, 128, 256, 24, 64, 64),InceptionModule(512, 112, 144, 288, 32, 64, 64),InceptionModule(528, 256, 160, 320, 32, 128, 128),nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True))self.inception4 = nn.Sequential(InceptionModule(832, 256, 160, 320, 32, 128, 128),InceptionModule(832, 384, 192, 384, 48, 128, 128),nn.AdaptiveAvgPool2d((1, 1)))self.dropout = nn.Dropout(0.4)self.fc = nn.Linear(1024, num_classes)def forward(self, x):out = self.conv1(x)out = self.conv2(out)out = self.inception1(out)out = self.inception2(out)out = self.maxpool(out)out = self.inception3(out)out = self.inception4(out)out = out.view(out.size(0), -1)out = self.dropout(out)out = self.fc(out)return out# 创建GoogLeNet模型实例
model = GoogLeNet()
在上面的代码中,定义了一个 InceptionModule
类,用于创建GoogLeNet中的Inception模块。然后,我们使用这个自定义模块构建了GoogLeNet模型,其中包括多个 InceptionModule
实例作为模型的层。
可以根据需要自定义 InceptionModule
类的参数,例如输入通道数、各个分支的输出通道数和卷积核大小等。同时,你也可以调整 GoogLeNet
类中的层次结构和参数,以适应你的特定任务。
相关文章:

用pytorch实现google net
GoogleNet(也称为Inception v1)是由Google在2014年提出的一个深度卷积神经网络架构。它在ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014比赛中取得了优秀的成绩,并引起了广泛的关注。 GoogleNet的设计目标是构建一个更…...

2023-8-15差分矩阵
题目链接:差分矩阵 #include <iostream>using namespace std;const int N 1010;int n, m, q; int a[N][N], b[N][N];void insert(int x1, int y1, int x2, int y2, int c) {b[x1][y1] c;b[x1][y2 1] - c;b[x2 1][y1] - c;b[x2 1][y2 1] c; }int main…...
物理公式分类
(99 封私信 / 81 条消息) 定义式和决定式有什么区别,怎么区分? - 知乎 (zhihu.com) 1、首先,定义一个物理符号(物理量)来表征物理世界最直观/最基本的物理现象,例如,长度(米…...
vue实现登录注册
目录 一、登录页面 二、注册页面 三、配置路由 一、登录页面 <template><div class"login_container" style"background-color: rgb(243,243,243);height: 93.68vh;background-image: url(https://ts1.cn.mm.bing.net/th/id/R-C.f878c96c4179c501a6…...

SpringBoot复习:(55)在service类中的方法上加上@Transactional注解后,Spring底层是怎么生成代理对象的?
SpringBoot run方法代码如下: 可以看到它会调用refreshContext方法来刷新Spring容器,这个refreshContext方法最终会调用AbstractApplicationContext的refresh方法,代码如下 如上图,refresh方法最终会调用finisheBeanFactoryInit…...
常用的图像校正方法
在数字图像处理中,常用的校正方法包括明场均匀性校正、查找表(LUT)校正和伽玛(Gamma)校正。这些校正方法分别针对不同的图像问题,可以改善图像质量,提升图像的可读性和可分析性。下面是这三种校…...

AWS security 培训笔记
云计算的好处 Amazon S3 (Storage) Amazon EC2 (Compute) 上图aws 的几个支柱:安全是其中一个啦 其中安全有几个方面 IAMdetection基础架构保护数据保护应急响应 关于云供应商的责任 data center 原来长这样 ,据说非常之隐蔽的 如果有天退役了…...

设计模式之代理模式(Proxy)的C++实现
1、代理模式的提出 在组件的开发过程中,有些对象由于某种原因(比如对象创建的开销很大,或者对象的一些操作需要做安全控制,或者需要进程外的访问等),会使Client使用者在操作这类对象时可能会存在问题&…...

vim 配置环境变量与 JDK 编译器异常
vim 配置环境变量 使用 vim 打开系统中的配置信息(不存在将会创建): vim ~/.bash_profile 以配置两个版本 JDK 为例(前提是已安装 JDK),使用上述命令打开配置信息: 输入法调成英文,输入 i&…...

TiDB v7.1.0 跨业务系统多租户解决方案
本文介绍了 TiDB 数据库的资源管控技术,并通过业务测试验证了效果。资源管控技术旨在解决多业务共用一个集群时的资源隔离和负载问题,通过资源组概念,可以限制不同业务的计算和 I/O 资源,实现资源隔离和优先级调度,提高…...
【题解】二叉树中和为某一值的路径(一)
二叉树中和为某一值的路径(一) 题目链接:二叉树中和为某一值的路径(一) 解题思路1:递归 我们或许想记录下每一条从根节点到叶子节点的路径,计算出该条路径的和,但此种思路用递归稍麻烦,我们可以试着把和转换为差&am…...
css中变量和使用变量和运算
变量: 语法:--css变量名:值; --view-theme: #1a99fb; css使用变量: 语法:属性名:var( --css变量名 ); color: var(--view-theme); css运算: 语法:属性名…...
数据结构之线性表的类型运用Linear Lists: 数组,栈,队列,链表
线性表 定义 一个最简单,最基本的数据结构。一个线性表由多个相同类型的元素穿在一次,并且每一个元素都一个前驱(前一个元素)和后继(后一个元素)。 线性表的类型 常见的类型:数组、栈、队列…...

成瘾机制中微生物群的神秘角色
谷禾健康 成瘾是一种大脑疾病,受害者无法控制地对某种物质或行为产生强烈的依赖和渴求,尽管这种行为会产生有害的后果。成瘾包括一系列物质滥用障碍,例如药物、酒精、香烟,过度饮食。近年来,吸毒成瘾急剧上升ÿ…...

arm安装docker与docker-copose
一、银河麒麟Arm64安装docker 1、docker 安装包地址: https://download.docker.com/linux/static/stable 2、解压,然后将docker目录下文件拷贝到/usr/bin里 tar -xf docker-18.09.3.tgz mv docker/* /usr/bin/ 3、准备 docker.service系统配置文件 &…...

9.文件基本操作
第四章 文件管理 9.文件基本操作 “打开文件和关闭文件”与平常鼠标双击打开文件和点击“X”关闭文件是有所不同的。 操作系统在处理open系统调用时主要做了以下两件事情,①根据我们提供的文件存放路径在外存当中找到这个目录对应的目录表&#x…...

【Java】Spring——Bean对象的作用域和生命周期
文章目录 前言一、引出Bean对象的作用域1.普通变量的作用域2.Bean对象的作用域 二、Bean对象的作用域1.Bean对象的6种作用域2.设置Bean对象的作用域 三、Bean对象的生命周期总结 前言 本人是一个普通程序猿!分享一点自己的见解,如果有错误的地方欢迎各位大佬莅临指导,如果你也…...

数字孪生助力智慧水务:科技创新赋能水资源保护
智慧水务中,数字孪生有着深远的作用,正引领着水资源管理和环境保护的创新变革。随着城市化和工业化的不断推进,水资源的可持续利用和管理愈发显得重要,而数字孪生技术为解决这一挑战提供了独特的解决方案。 数字孪生技术…...

css 实现文字横向循环滚动
实现效果 思路 ## 直接上代码,html部分 //我这里是用的uniapp <view class"weather_info_wrap"><view class"weather_info">当前多云,今晚8点转晴,明天有雨,温度32摄氏度。</view><view class&qu…...
VuePress 数学公式支持
前言 博主在为 VuePress1.0 博客添加数学公式支持过程中遇到如下问题 问题一 在配置诸如 markdown-it-texmath,markdown-it-katex,markdown-it-mathjax3 这些插件后遇到 Error: Dynamic require of "XXX" is not supported 问题二 配置插件 vuepress-plugin-ma…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...