当前位置: 首页 > news >正文

接口测试,负载测试,并发测试,压力测试区别

接口测试

1.定义:接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换,传递和控制管理过程,以及系统间的相互逻辑依赖关系等。

2.目的:

更早的发现问题
缩短产品周期
发现更底层的问题

3、方法:

可以通过接口测试工具进行接口测试,查看接口的各种参数,请求头、请求体、响应和响应头是否符合要求规范。接口测试工具--apipost

 负载测试

1、定义:

负载测试是通过逐步增加系统负载,测试系统性能的变化,并最终确定在满足性能指标的情况下,系统所能承受的最大负载量的测试。

2、目的:

检测系统运行的最大上限,使系统能够在最大的压力下可以正常运行。从而获取系统指标。

3、方法:

不断增加请求压力,直到服务器某个资源项达到饱和(比如CPU使用率达到90%+)或某个指标达到安全临界值(比如运维的监控告警阈值or拐点)。系统负载压力包含并发用户数、持续运行时间、数据量等。其中并发用户数是负载压力的重要指标。

并发测试

1、目的:检查系统是否有并发问题,例如内存泄漏、线程锁、资源争用等问题。

2、方法:确定用户并发数,必须知道系统所承载的在线用户数。然后在单位时间内(S)同时发起一定量的请求。

3、确定并发用户数的方法:

例如:公司OA系统账号或者总用户有2000人;最高峰在线500人;但是这500人并不是作为并发用户存在的概念。即并不表示服务器实际承载的压力;有可能40%关注的是首页新闻公告板之类(注意看新闻这个阶段是不能造成服务器的压力);20%用户在查询资料或者操作表格;20%用户在发呆;20%在页面之间跳转;在这种情况下,只有真正20%用户在对服务器造成实质的影响。

我们将这个查询、操作表格作为一个业务范畴来说;直接将这部分业务并发用户称为并发用户数:

1.计算平均并发用户数:C=NL/T

2.并发用户峰值数:C’ ≈ C+3根号C

公式(1)中,C是平均的并发用户数;n是login session的数量;L是login session的平均长度;T指考察的时间段长度。

公式(2)则给出了并发用户数峰值的计算方式中,其中,C’指并发用户数的峰值,C就是公式(1)中得到的平均的并发用户数。该公式的得出是假设用户的login session产生符合泊松分布而估算得到的。

假设有一个OA系统,该系统有3000个用户,(可以看注册信息)平均每天大约有400个用户要访问该系统,(日志文件查看)对一个典型用户来说,一天之内用户从登录到退出该系统的平均时间为4小时,在一天的时间内,用户只在8小时内使用该系统。

则根据公式(1)和公式(2),可以得到:

C = 4004/8 = 200

C’≈200+3根号200 = 242

但是一般的做法是把每天访问系统用户数的10%作为平均的并发用户数。最大的并发用户数乘上一个值,2或者3.

假如说用户要求系统每秒最大可以处理100个登陆请求,10/25/50/75/100 个并发用户来执行登陆操作,然后观察系统在不同负载下的响应时间和每秒事务数。如果用户数在100的时候,响应时间还在允许范围呢,就要加大用户数,例如120 等 。个人理解这个用户数就是我们经常说的等价类和边界值法来设定。

压力测试

1、定义:

不断增加并发数量,给软件不断加压,强制其在极限的情况下运行,观察它可以运行到何种程度,从而发现性能缺陷。

2、目的:

查看系统能够承受的最大并发量是多少,在达到多少并发的时候系统会崩溃。

3、方法:以负载测试或者并发测试为依据,给软件不断加压,强制其在极限的情况下运行,观察它可以运行到何种程度,从而发现性能缺陷。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

在这里插入图片描述

软件测试面试小程序

被百万人刷爆的软件测试题库!!!谁用谁知道!!!全网最全面试刷题小程序,手机就可以刷题,地铁上公交上,卷起来!

涵盖以下这些面试题板块:

1、软件测试基础理论 ,2、web,app,接口功能测试 ,3、网络 ,4、数据库 ,5、linux

6、web,app,接口自动化 ,7、性能测试 ,8、编程基础,9、hr面试题 ,10、开放性测试题,11、安全测试,12、计算机基础

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!  

相关文章:

接口测试,负载测试,并发测试,压力测试区别

接口测试 1.定义:接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换,传递和控制管理过程,以及系统间的相互逻辑依赖关系等。 2.目的&#xf…...

WebRTC +Signal + ICE

在 WebRTC 中,ICE(Interactive Connectivity Establishment)服务是用于解决网络地址转换(NAT)和防火墙障碍的关键组件。以下是一些常见的开源 ICE 服务框架,可以用于搭建 ICE 服务器来支持 WebRTC 连接&…...

循环内的try-catch 跟循环外的try-catch有什么不一样

起因:一位面试管突然问了这么一道基础的面试题,反而秀了面试者一脸,经常用的却被问到时不知道怎么回答,所以我们平时在写代码的时候,要多注意细节跟原理。也许你不服:不就是先这样,再那样&#…...

C语言实现Java三大特性

// 前言 面向对象的java语言有着多种设计模式与特性。比如封装、继承、多态等等。 在这篇文章中,我会使用java的代码思路,实现C语言版的JAVA三大特性。 并从写代码的角度,从0开始构建。 定义结构体(对象) 设计了一…...

GBU812-ASEMI新能源专用整流桥GBU812

编辑:ll GBU812-ASEMI新能源专用整流桥GBU812 型号:GBU812 品牌:ASEMI 封装:GBU-4 恢复时间:>50ns 正向电流:80A 反向耐压:1200V 芯片个数:4 引脚数量&#xff…...

数据结构,线性表与线性结构关系,顺序表与顺序结构关系,线性表与顺序表关系

学习数据结构会出现很多的概念如顺序结构,非线性结构,顺序表,顺序结构,顺序表,链表,栈,队列,堆等。今天来小讲以下其中的线性表与线性结构,顺序表与顺序结构的关系。 在数…...

Bigemap Pro国产基础软件介绍——一款多源数据处理软件

一、软件简介 Bigemap Pro是由成都比格图数据处理有限公司(下称”BIGEMAP”)开发和发行的国产大数据处理基础软件。Bigemap Pro是在BIGEMAP GIS Office基础上,经过十年的用户积累与反馈和技术更新迭代出的新一代基础软件产品。Bigemap Pro国产基础软件集成了数据采…...

算法练习Day49|● 121. 买卖股票的最佳时机 ● 122.买卖股票的最佳时机II

LeetCode: 121. 买卖股票的最佳时机 121. 买卖股票的最佳时机 - 力扣(LeetCode) 1.思路 暴力解法、贪心也算比较符合思维,动规不容易想到,且状态处理不易处理 股票每天的状态为持有或不持有:声明dp数组&#xff1a…...

【Android Framework (十二) 】- 智能硬件设备开发

文章目录 前言智能硬件的定义与应用智能硬件产品开发流程智能硬件开发所涉及的技术体系概述关于主板选型主板CPU芯片的选择关于串口通信 总结 前言 针对我过往工作经历,曾在一家智能科技任职Android开发工程师,简单介绍下关于任职期间接触和开发过的一些…...

若依框架给字典字段新增color值,并且实现下拉列表选项进行颜色设置

首先获取所要新增的字典,并且根据字典的value值选取对应的颜色参数 this.getDicts("risk_level").then(response > {const color {mild:#F1F4BD,moderate:#EEC920,severe:#FF6C0D,very_severe:#FF0000,no_harm:green};const res response.data.map(…...

JDK 8 升级 JDK 17 全流程教学指南

JDK 8 升级 JDK 17 首先已有项目升级是会经历一个较长的调试和自测过程来保证允许和兼容没有问题。先说几个重要的点 遇到问题别放弃仔细阅读报错,精确到每个单词每一行,不是自己项目的代码也要点进去看看源码到底是为啥报错明确你项目引入的包&#x…...

Docker 网络之 ipvlan 和 macvlan

Docker ipvlan 和 macvlan 引言 本文讲解了Docker 网络模式中的 ipvlan 和 macvlan 的区别,目前自己在生产环境中使用的 ipvlan 模式非常问题.也解决了实际业务问题. IPvlan L2 mode example ipvlan 无需网卡混杂模式 , 运行如下命令后可以生成一个 vlan 子接口 , 会和主网卡…...

【Rust】Rust学习 第十三章Rust 中的函数式语言功能:迭代器与闭包

Rust 的设计灵感来源于很多现存的语言和技术。其中一个显著的影响就是 函数式编程(functional programming)。函数式编程风格通常包含将函数作为参数值或其他函数的返回值、将函数赋值给变量以供之后执行等等。 更具体的,我们将要涉及&#…...

【Linux操作系统】详解Linux系统编程中的管道进程通信

在Linux系统编程中,管道是一种常用的进程间通信方式。它可以实现父子进程之间或者兄弟进程之间的数据传输。本文将介绍如何使用管道在Linux系统中进行进程通信,并给出相应的代码示例。 文章目录 1. 管道的概念2. 管道的创建和使用2.1 原型2.2 示例 3. 父…...

【Redis从头学-4】Redis中的String数据类型实战应用场景之验证码、浏览量、点赞量、Json格式存储

🧑‍💻作者名称:DaenCode 🎤作者简介:啥技术都喜欢捣鼓捣鼓,喜欢分享技术、经验、生活。 😎人生感悟:尝尽人生百味,方知世间冷暖。 📖所属专栏:Re…...

linux 统计命令

统计命令 使用wc来进行统计 # wc [选项] 文件名wc -l a 2 awc -w a 8 a---------------l 统计行数-w 统计单词数-m 统计字符数-c 统计字节数 https://zhhll.icu/2021/linux/基础/统计命令/ 本文由 mdnice 多平台发布...

docker部署springboot应用

一、下载安装docker curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 启动:systemctl start docker 二、配置国内镜像源 (1)在/etc/docker目录中添加daemon.json文件,内容如下: { …...

YOLO v5、v7、v8 模型优化

YOLO v5、v7、v8 模型优化 魔改YOLOyaml 文件解读模型选择在线做数据标注 YOLO算法改进YOLOv5yolo.pyyolov5.yaml更换骨干网络之 SwinTransformer更换骨干网络之 EfficientNet优化上采样方式:轻量化算子CARAFE 替换 传统(最近邻 / 双线性 / 双立方 / 三线…...

回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览基本…...

QT的mysql(数据库)最佳实践和常见问题解答

涉及到数据库,首先安利一个软件Navicat Premium,用来查询数据库很方便 QMysql驱动是Qt SQL模块使用的插件,用于与MySQL数据库进行通信。要编译QMysql驱动,您需要满足以下条件: 您需要安装MySQL的客户端库和开发头文件…...

使用PyMuPDF库的PDF合并和分拆程序

PDF工具应用程序是一个使用wxPython和PyMuPDF库编写的简单工具,用于合并和分拆PDF文件。它提供了一个用户友好的图形界面,允许用户选择源文件夹和目标文件夹,并对PDF文件进行操作。 C:\pythoncode\blog\pdfmergandsplit.py 功能特点 选择文…...

2023/8/18 - You need to rely on yourself to achieve the life you want

...

Data Abstract for .NET and Delphi Crack

Data Abstract for .NET and Delphi Crack .NET和Delphi的数据摘要是一套或RAD工具,用于在.NET、Delphi和Mono中编写多层解决方案。NET和Delphi的数据摘要是一个套件,包括RemObjects.NET和Delphi版本的数据摘要。RemObjects Data Abstract允许您创建访问…...

Eclipse集成MapStruct

Eclipse集成MapStruct 在Eclipse中添加MapStruct依赖配置Eclipse支持MapStruct①安装 m2e-aptEclipse Marketplace的方式安装Install new software的方式安装(JDK8用到) ②添加到pom.xml 今天拿到同事其他项目的源码,导入并运行的时候抛出了异…...

采用pycharm在虚拟环境使用pyinstaller打包python程序

一年多以前,我写过一篇博客描述了如何虚拟环境打包,这一次有所不同,直接用IDE pycharm构成虚拟环境并运行pyinstaller打包 之前的博文: 虚拟环境venu使用pyinstaller打包python程序_伊玛目的门徒的博客-CSDN博客 第一步&#xf…...

Rx.NET in Action 中文介绍 前言及序言

Rx 处理器目录 (Catalog of Rx operators) 目标可选方式Rx 处理器(Operator)创建 Observable Creating Observables直接创建 By explicit logicCreate Defer根据范围创建 By specificationRangeRepeatGenerateTimerInterval Return使用预设 Predefined primitivesThrow …...

Azure Blob存储使用

创建存储账户,性能选择标准即可,冗余选择本地冗余存储即可 容器选择类别选择专用即可 可以上传文件到blob中 打开文件可以看到文件的访问路径 4.编辑中可以修改文件 复制链接,尝试访问,可以看到没有办法访问,因为创建容器的时候选…...

mysql、redis面试题

mysql 相关 1、数据库优化查询方法 外键、索引、联合查询、选择特定字段等等2、简述mysql和redis区别 redis: 内存型非关系数据库,数据保存在内存中,速度快mysql:关系型数据库,数据保存在磁盘中,检索的话&…...

22、touchGFX学习Model-View-Presenter设计模式

touchGFX采用MVP架构,如下所示: 本文界面如下所示: 本文将实现两个操作: 1、触摸屏点击开关按键实现打印开关显示信息,模拟开关灯效果 2、板载案按键控制触摸屏LED灯的显示和隐藏 一、触摸屏点击开关按键实现打印开…...

Python Opencv实践 - 图像高斯滤波(高斯模糊)

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols,channels img.shape print(rows,cols,channels)#为图像添加高斯噪声 #使用np.random.normal(loc0.0, scale1.0…...