当前位置: 首页 > news >正文

Lnton羚通关于PyTorch的保存和加载模型基础知识

SAVE AND LOAD THE MODEL (保存和加载模型)

PyTorch 模型存储学习到的参数在内部状态字典中,称为 state_dict, 他们的持久化通过 torch.save 方法。

model = models.shufflenet_v2_x0_5(pretrained=True)
torch.save(model, "../../data/ShuffleNetV2_X0.5.pth")

如果要加载模型的话,首先需要实例化一个同类型的模型对象,然后用 load_state_dict() 方法加载参数。

model = models.shufflenet_v2_x0_5()
model.load_state_dict(torch.load("../../data/ShuffleNetV2_X0.5.pth"))
model.eval()
Output exceeds the size limit. Open the full output data in a text editor
ShuffleNetV2((conv1): Sequential((0): Conv2d(3, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(stage2): Sequential((0): InvertedResidual((branch1): Sequential((0): Conv2d(24, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=24, bias=False)(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(4): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(24, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=24, bias=False)(4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(6): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(7): ReLU(inplace=True)
...(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(fc): Linear(in_features=1024, out_features=1000, bias=True)
)

Saving and Loading Models with Shapes
当加载模型权重时,我们需要首先实例化模型类,因为类定义了网络的结构。我们可能想要保存类的结构以及模型,在这种情况下,我们可以将 model (而不是 model.state_dict() ) 传递给保存函数:
 

torch.save(model, "../../data/ShuffleNetV2_X0.5_eval2.pth")

加载模型如这样:

model = torch.load("../../data/ShuffleNetV2_X0.5_eval2.pth")
print(model)

这种方法在序列化模型时使用 Python pickle 模块,因此它依赖于加载模型时可用的实际类定义。

Lnton羚通专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持ONVIF、RTSP、GB/T28181等多协议、多路数的音视频智能分析服务器/云平台。

相关文章:

Lnton羚通关于PyTorch的保存和加载模型基础知识

SAVE AND LOAD THE MODEL (保存和加载模型) PyTorch 模型存储学习到的参数在内部状态字典中,称为 state_dict, 他们的持久化通过 torch.save 方法。 model models.shufflenet_v2_x0_5(pretrainedTrue) torch.save(model, "../../data/ShuffleNetV2_X0.5.pth…...

python+django+mysql项目实践四(信息修改+用户登陆)

python项目实践 环境说明: Pycharm 开发环境 Django 前端 MySQL 数据库 Navicat 数据库管理 用户信息修改 修改用户信息需要显示原内容,进行修改 通过url传递编号 urls views 修改内容需要用数据库的更新,用update进行更新,用filter进行选择 输入参数多nid,传递要修…...

sCrypt编程马拉松于8月13日在复旦大学成功举办

继6月在英国Exeter大学成功举办了为期一周的区块链编程马拉松后,美国sCrypt公司创始人兼CEO刘晓晖博士带领核心团队成员王一强、郑宏锋、周全,于8月13日在复旦大学再次成功举办了一场全新的sCrypt编程马拉松。 本次活动由上海可一澈科技有限公司与复旦大…...

Selenium手动和自动两种方式启动Chrome驱动

1. 自动启动chrome驱动(已经安装了Selenium库和Chrome驱动) 要使用Selenium自动跟随自带的Chrome驱动,你需要首先确保你已经安装了Selenium库和Chrome驱动。然后,你可以按照以下步骤进行操作: 导入必要的库: from selenium imp…...

《PostgreSQL 开发指南》第32篇 物化视图

物化视图概述 物化视图(Materialized View)是 PostgreSQL 提供的一个扩展功能,它是介于视图和表之间的一种对象。 物化视图和视图的最大区别是它不仅存储定义中的查询语句,而且可以像表一样存储数据。物化视图和表的最大区别是它…...

【RocketMQ】快速入门

文章目录 消费模式同步消息异步消息单向消息延迟消息批量消息顺序消息事务消息Tag标签和Key键Tag的使用Key的使用 首先引入rocketmq的依赖 <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-client</artifactId><ve…...

AB跳转轮询:让你的独立站收款智能化

独立站在近两年成为跨境电商的热门布局之一&#xff0c;特别是在亚马逊封号潮后&#xff0c;许多卖家开始转向独立站运营。然而&#xff0c;在迅速发展的同时&#xff0c;也不可避免地出现了一些问题&#xff0c;比如很多卖家的资金经常被不同程度地冻结&#xff0c;好不容易出…...

所有用户都能使用sudo吗

是的&#xff0c;Linux系统中的普通用户可以通过配置访问 sudo 命令来获得超级用户&#xff08;root&#xff09;权限的临时访问权。这使得普通用户可以在需要时执行需要管理员权限的操作&#xff0c;而无需永久性地切换到超级用户账户。 通过 sudo 命令&#xff0c;系统管理员…...

【广州华锐视点】VR警务教育实训系统模拟真实场景进行实践训练

随着科技的发展&#xff0c;虚拟现实技术在教育领域得到了广泛的应用。VR警务教育实训系统就是其中的一种应用&#xff0c;该系统由广州华锐互动开发&#xff0c;可以模拟真实的警务场景&#xff0c;让学生通过虚拟现实技术进行实践训练&#xff0c;提高学生的实践能力和技能水…...

【深入浅出C#】章节 7: 文件和输入输出操作:处理文本和二进制数据

文件和输入输出操作在计算机编程中具有重要性&#xff0c;因为它们涉及数据的持久化存储和交互。数据可以是不同类型的&#xff0c;例如文本、图像、音频、视频和二进制数据。这些不同类型的数据具有不同的存储需求。 文本数据是最常见的数据类型之一&#xff0c;用于存储和传输…...

Matlab中图例的位置(图例放在图的上方、下方、左方、右方、图外面)等

一、图例默认位置 默认的位置在NorthEast r 10; a 0; b 0; t0:0.1:2.1*pi; xar*cos(t); ybr*sin(t); A1plot(x,y,r,linewidth,4);%圆 hold on axis equal A2plot([0 0],[1 10],b,linewidth,4);%直线 legend([A1,A2],圆形,line)二、通过Location对legend的位置进行改变 变…...

【算法学习】两数之和II - 输入有序数组

题目描述 原题链接 给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < …...

聚观早报|京东称在技术投入没有止境;木蚁机器人完成B2轮融资

【聚观365】8月18日消息 京东零售CEO表示在技术上投入没有止境 木蚁机器人完成B2轮超亿元融资 耐能推出AI芯片KL730 三星电子泰勒晶圆厂首家客户是AI半导体厂商 韩国新能源汽车7月出口额同比大增36% 京东零售CEO表示在技术上投入没有止境 近日&#xff0c;京东零售CEO辛利…...

C语言:选择+编程(每日一练)

目录 选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 题五&#xff1a; 编程题&#xff1a; 题一&#xff1a;尼科彻斯定理 示例1 题二&#xff1a;等差数列 示例2 本人实力有限可能对一些地方解释和理解的不够清晰&…...

信道数据传输速率、码元传输速率、调制速度,信号传播速度之间的关系

1、信道数据传输速率&#xff08;bit/s&#xff09; 举例&#xff1a;移动通信中的数据传输速率。假设你的手机连接到4G网络&#xff0c;该网络的最大理论数据传输速率为100 Mbps。这意味着在理想情况下&#xff0c;你的手机可以以每秒100兆比特的速度传输数据。 2、码元传输速…...

docker的使用方法总结

Docker是一个非常强大的工具&#xff0c;它可以用于创建、部署和运行应用程序。以下是一些docker相关的常用指令&#xff0c; 1、查看docker版本 docker version 2、查看正在运行的Docker容器 docker ps 3、查看所有的docker容器&#xff08;包括没有运行的容器&#xff0…...

【C#】条码管理操作手册

前言&#xff1a;本文档为条码管理系统操作指南&#xff0c;介绍功能使用、参数配置、资源链接&#xff0c;以及异常的解决等。思维导图如下&#xff1a; 一、思维导图 二、功能操作–条码打印&#xff08;客户端&#xff09; 2.1 参数设置 功能介绍&#xff1a;二维码图片样…...

RabbitMq-发布确认高级(避坑指南版)

在初学rabbitMq的时候&#xff0c;伙伴们肯定已经接触到了“发布确认”的概念&#xff0c;但是到了后期学习中&#xff0c;会接触到“springboot”中使用“发布确认”高级的概念。后者主要是解决什么问题呢&#xff1f;或者是什么样的场景引出这样的概念呢&#xff1f; 在生产环…...

Blender增强现实3D模型制作指南【AR】

推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 将静态和动画 3D 内容集成到移动增强现实 (AR) 体验中是增强用户沉浸感和参与度的高效方法。 然而&#xff0c;为 AR 创建 3D 对象可能相当艰巨&#xff0c;尤其是对于那些缺乏 3D 建模经验的人来说。 与添加视频或照片 AR…...

Java查看https证书过期时间(JKS,CERT)

在这里需要使用X.509 证书的抽象类 X509Certificate 。此类提供了一种访问 X.509 证书所有属性的标准方式。 这些证书被广泛使用以支持 Internet 安全系统中的身份验证和其他功能。常见的应用包括增强保密邮件 (PEM)、传输层安全 (SSL)、用于受信任软件发布的代码签名和安全电…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...