当前位置: 首页 > news >正文

Lnton羚通关于PyTorch的保存和加载模型基础知识

SAVE AND LOAD THE MODEL (保存和加载模型)

PyTorch 模型存储学习到的参数在内部状态字典中,称为 state_dict, 他们的持久化通过 torch.save 方法。

model = models.shufflenet_v2_x0_5(pretrained=True)
torch.save(model, "../../data/ShuffleNetV2_X0.5.pth")

如果要加载模型的话,首先需要实例化一个同类型的模型对象,然后用 load_state_dict() 方法加载参数。

model = models.shufflenet_v2_x0_5()
model.load_state_dict(torch.load("../../data/ShuffleNetV2_X0.5.pth"))
model.eval()
Output exceeds the size limit. Open the full output data in a text editor
ShuffleNetV2((conv1): Sequential((0): Conv2d(3, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(stage2): Sequential((0): InvertedResidual((branch1): Sequential((0): Conv2d(24, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=24, bias=False)(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(4): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(24, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=24, bias=False)(4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(6): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(7): ReLU(inplace=True)
...(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(fc): Linear(in_features=1024, out_features=1000, bias=True)
)

Saving and Loading Models with Shapes
当加载模型权重时,我们需要首先实例化模型类,因为类定义了网络的结构。我们可能想要保存类的结构以及模型,在这种情况下,我们可以将 model (而不是 model.state_dict() ) 传递给保存函数:
 

torch.save(model, "../../data/ShuffleNetV2_X0.5_eval2.pth")

加载模型如这样:

model = torch.load("../../data/ShuffleNetV2_X0.5_eval2.pth")
print(model)

这种方法在序列化模型时使用 Python pickle 模块,因此它依赖于加载模型时可用的实际类定义。

Lnton羚通专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持ONVIF、RTSP、GB/T28181等多协议、多路数的音视频智能分析服务器/云平台。

相关文章:

Lnton羚通关于PyTorch的保存和加载模型基础知识

SAVE AND LOAD THE MODEL (保存和加载模型) PyTorch 模型存储学习到的参数在内部状态字典中,称为 state_dict, 他们的持久化通过 torch.save 方法。 model models.shufflenet_v2_x0_5(pretrainedTrue) torch.save(model, "../../data/ShuffleNetV2_X0.5.pth…...

python+django+mysql项目实践四(信息修改+用户登陆)

python项目实践 环境说明: Pycharm 开发环境 Django 前端 MySQL 数据库 Navicat 数据库管理 用户信息修改 修改用户信息需要显示原内容,进行修改 通过url传递编号 urls views 修改内容需要用数据库的更新,用update进行更新,用filter进行选择 输入参数多nid,传递要修…...

sCrypt编程马拉松于8月13日在复旦大学成功举办

继6月在英国Exeter大学成功举办了为期一周的区块链编程马拉松后,美国sCrypt公司创始人兼CEO刘晓晖博士带领核心团队成员王一强、郑宏锋、周全,于8月13日在复旦大学再次成功举办了一场全新的sCrypt编程马拉松。 本次活动由上海可一澈科技有限公司与复旦大…...

Selenium手动和自动两种方式启动Chrome驱动

1. 自动启动chrome驱动(已经安装了Selenium库和Chrome驱动) 要使用Selenium自动跟随自带的Chrome驱动,你需要首先确保你已经安装了Selenium库和Chrome驱动。然后,你可以按照以下步骤进行操作: 导入必要的库: from selenium imp…...

《PostgreSQL 开发指南》第32篇 物化视图

物化视图概述 物化视图(Materialized View)是 PostgreSQL 提供的一个扩展功能,它是介于视图和表之间的一种对象。 物化视图和视图的最大区别是它不仅存储定义中的查询语句,而且可以像表一样存储数据。物化视图和表的最大区别是它…...

【RocketMQ】快速入门

文章目录 消费模式同步消息异步消息单向消息延迟消息批量消息顺序消息事务消息Tag标签和Key键Tag的使用Key的使用 首先引入rocketmq的依赖 <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-client</artifactId><ve…...

AB跳转轮询:让你的独立站收款智能化

独立站在近两年成为跨境电商的热门布局之一&#xff0c;特别是在亚马逊封号潮后&#xff0c;许多卖家开始转向独立站运营。然而&#xff0c;在迅速发展的同时&#xff0c;也不可避免地出现了一些问题&#xff0c;比如很多卖家的资金经常被不同程度地冻结&#xff0c;好不容易出…...

所有用户都能使用sudo吗

是的&#xff0c;Linux系统中的普通用户可以通过配置访问 sudo 命令来获得超级用户&#xff08;root&#xff09;权限的临时访问权。这使得普通用户可以在需要时执行需要管理员权限的操作&#xff0c;而无需永久性地切换到超级用户账户。 通过 sudo 命令&#xff0c;系统管理员…...

【广州华锐视点】VR警务教育实训系统模拟真实场景进行实践训练

随着科技的发展&#xff0c;虚拟现实技术在教育领域得到了广泛的应用。VR警务教育实训系统就是其中的一种应用&#xff0c;该系统由广州华锐互动开发&#xff0c;可以模拟真实的警务场景&#xff0c;让学生通过虚拟现实技术进行实践训练&#xff0c;提高学生的实践能力和技能水…...

【深入浅出C#】章节 7: 文件和输入输出操作:处理文本和二进制数据

文件和输入输出操作在计算机编程中具有重要性&#xff0c;因为它们涉及数据的持久化存储和交互。数据可以是不同类型的&#xff0c;例如文本、图像、音频、视频和二进制数据。这些不同类型的数据具有不同的存储需求。 文本数据是最常见的数据类型之一&#xff0c;用于存储和传输…...

Matlab中图例的位置(图例放在图的上方、下方、左方、右方、图外面)等

一、图例默认位置 默认的位置在NorthEast r 10; a 0; b 0; t0:0.1:2.1*pi; xar*cos(t); ybr*sin(t); A1plot(x,y,r,linewidth,4);%圆 hold on axis equal A2plot([0 0],[1 10],b,linewidth,4);%直线 legend([A1,A2],圆形,line)二、通过Location对legend的位置进行改变 变…...

【算法学习】两数之和II - 输入有序数组

题目描述 原题链接 给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < …...

聚观早报|京东称在技术投入没有止境;木蚁机器人完成B2轮融资

【聚观365】8月18日消息 京东零售CEO表示在技术上投入没有止境 木蚁机器人完成B2轮超亿元融资 耐能推出AI芯片KL730 三星电子泰勒晶圆厂首家客户是AI半导体厂商 韩国新能源汽车7月出口额同比大增36% 京东零售CEO表示在技术上投入没有止境 近日&#xff0c;京东零售CEO辛利…...

C语言:选择+编程(每日一练)

目录 选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 题五&#xff1a; 编程题&#xff1a; 题一&#xff1a;尼科彻斯定理 示例1 题二&#xff1a;等差数列 示例2 本人实力有限可能对一些地方解释和理解的不够清晰&…...

信道数据传输速率、码元传输速率、调制速度,信号传播速度之间的关系

1、信道数据传输速率&#xff08;bit/s&#xff09; 举例&#xff1a;移动通信中的数据传输速率。假设你的手机连接到4G网络&#xff0c;该网络的最大理论数据传输速率为100 Mbps。这意味着在理想情况下&#xff0c;你的手机可以以每秒100兆比特的速度传输数据。 2、码元传输速…...

docker的使用方法总结

Docker是一个非常强大的工具&#xff0c;它可以用于创建、部署和运行应用程序。以下是一些docker相关的常用指令&#xff0c; 1、查看docker版本 docker version 2、查看正在运行的Docker容器 docker ps 3、查看所有的docker容器&#xff08;包括没有运行的容器&#xff0…...

【C#】条码管理操作手册

前言&#xff1a;本文档为条码管理系统操作指南&#xff0c;介绍功能使用、参数配置、资源链接&#xff0c;以及异常的解决等。思维导图如下&#xff1a; 一、思维导图 二、功能操作–条码打印&#xff08;客户端&#xff09; 2.1 参数设置 功能介绍&#xff1a;二维码图片样…...

RabbitMq-发布确认高级(避坑指南版)

在初学rabbitMq的时候&#xff0c;伙伴们肯定已经接触到了“发布确认”的概念&#xff0c;但是到了后期学习中&#xff0c;会接触到“springboot”中使用“发布确认”高级的概念。后者主要是解决什么问题呢&#xff1f;或者是什么样的场景引出这样的概念呢&#xff1f; 在生产环…...

Blender增强现实3D模型制作指南【AR】

推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 将静态和动画 3D 内容集成到移动增强现实 (AR) 体验中是增强用户沉浸感和参与度的高效方法。 然而&#xff0c;为 AR 创建 3D 对象可能相当艰巨&#xff0c;尤其是对于那些缺乏 3D 建模经验的人来说。 与添加视频或照片 AR…...

Java查看https证书过期时间(JKS,CERT)

在这里需要使用X.509 证书的抽象类 X509Certificate 。此类提供了一种访问 X.509 证书所有属性的标准方式。 这些证书被广泛使用以支持 Internet 安全系统中的身份验证和其他功能。常见的应用包括增强保密邮件 (PEM)、传输层安全 (SSL)、用于受信任软件发布的代码签名和安全电…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...