前馈神经网络正则化例子
直接看代码:
import torch
import numpy as np
import random
from IPython import display
from matplotlib import pyplot as plt
import torchvision
import torchvision.transforms as transforms mnist_train = torchvision.datasets.MNIST(root='/MNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.MNIST(root='./MNIST', train=False,download=True, transform=transforms.ToTensor()) batch_size = 256 train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True,num_workers=0)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False,num_workers=0) num_inputs,num_hiddens,num_outputs =784, 256,10def init_param():W1 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens,num_inputs)), dtype=torch.float32) b1 = torch.zeros(1, dtype=torch.float32) W2 = torch.tensor(np.random.normal(0, 0.01, (num_outputs,num_hiddens)), dtype=torch.float32) b2 = torch.zeros(1, dtype=torch.float32) params =[W1,b1,W2,b2]for param in params:param.requires_grad_(requires_grad=True) return W1,b1,W2,b2def relu(x):x = torch.max(input=x,other=torch.tensor(0.0)) return xdef net(X): X = X.view((-1,num_inputs)) H = relu(torch.matmul(X,W1.t())+b1) #myrelu =((matmal x,w1)+b1),return matmal(myrelu,w2 )+ b2return relu(torch.matmul(H,W2.t())+b2 )return torch.matmul(H,W2.t())+b2def SGD(paras,lr): for param in params: param.data -= lr * param.grad def l2_penalty(w):return (w**2).sum()/2def train(net,train_iter,test_iter,loss,num_epochs,batch_size,lr=None,optimizer=None,mylambda=0): train_ls, test_ls = [], []for epoch in range(num_epochs):ls, count = 0, 0for X,y in train_iter :X = X.reshape(-1,num_inputs)l=loss(net(X),y)+ mylambda*l2_penalty(W1) + mylambda*l2_penalty(W2)optimizer.zero_grad()l.backward()optimizer.step()ls += l.item()count += y.shape[0]train_ls.append(ls)ls, count = 0, 0for X,y in test_iter:X = X.reshape(-1,num_inputs)l=loss(net(X),y) + mylambda*l2_penalty(W1) + mylambda*l2_penalty(W2)ls += l.item()count += y.shape[0]test_ls.append(ls)if(epoch)%2==0:print('epoch: %d, train loss: %f, test loss: %f'%(epoch+1,train_ls[-1],test_ls[-1]))return train_ls,test_lslr = 0.01num_epochs = 20Lamda = [0,0.1,0.2,0.3,0.4,0.5]Train_ls, Test_ls = [], []for lamda in Lamda:print("current lambda is %f"%lamda)W1,b1,W2,b2 = init_param()loss = torch.nn.CrossEntropyLoss()optimizer = torch.optim.SGD([W1,b1,W2,b2],lr = 0.001)train_ls, test_ls = train(net,train_iter,test_iter,loss,num_epochs,batch_size,lr,optimizer,lamda) Train_ls.append(train_ls)Test_ls.append(test_ls)x = np.linspace(0,len(Train_ls[1]),len(Train_ls[1]))plt.figure(figsize=(10,8))for i in range(0,len(Lamda)):plt.plot(x,Train_ls[i],label= f'L2_Regularization:{Lamda [i]}',linewidth=1.5)plt.xlabel('different epoch')plt.ylabel('loss')plt.legend(loc=2, bbox_to_anchor=(1.1,1.0),borderAxesPad = 0.)plt.title('train loss with L2_penalty')plt.show()
运行结果:

疑问和心得:
- 画图的实现和细节还是有些模糊。
- 正则化系数一般是一个可以根据算法有一定变动的常数。
- 前馈神经网络中,二分类最后使用logistic函数返回,多分类一般返回softmax值,若是一般的回归任务,一般是直接relu返回。
- 前馈神经网络的实现,从物理层上应该是全连接的,但是网上的代码一般都是两层单个神经元,这个容易产生误解。个人感觉,还是要使用nn封装的函数比较正宗。
相关文章:
前馈神经网络正则化例子
直接看代码: import torch import numpy as np import random from IPython import display from matplotlib import pyplot as plt import torchvision import torchvision.transforms as transforms mnist_train torchvision.datasets.MNIST(root…...
spring的核心技术---bean的生命周期加案例分析详细易懂
目录 一.spring管理JavaBean的初始化过程(生命周期) Spring Bean的生命周期: 二.spring的JavaBean管理中单例模式及原型(多例)模式 2.1 . 默认为单例,但是可以配置多例 2.2.举例论证 2.2.1 默认单例 2.2…...
【Maven教程】(一)入门介绍篇:Maven基础概念与其他构建工具:理解构建过程与Maven的多重作用,以及与敏捷开发的关系 ~
Maven入门介绍篇 1️⃣ 基础概念1.1 构建1.2 maven对构建的支持1.3 Maven的其他作用 2️⃣ 其他构建工具2.1 IDE2.2 Make2.3 Ant2.4 Jenkins 3️⃣ Maven与敏捷开发🌾 总结 1️⃣ 基础概念 "Maven"可以翻译为 “知识的积累者” 或 “专家”。这个词源于波…...
今天,谷歌Chrome浏览器部署抗量子密码
谷歌已开始部署混合密钥封装机制(KEM),以保护在建立安全的 TLS 网络连接时共享对称加密机密。 8月10日,Chrome 浏览器安全技术项目经理Devon O’Brien解释说,从 8 月 15 日发布的 Chrome 浏览器 116 开始,谷…...
SUMO traci接口控制电动车前往充电站充电
首先需要创建带有停车位的充电站(停车场和充电站二合一),具体参考我的专栏中其他文章。如果在仿真的某个时刻,希望能够控制电动车前往指定的充电站充电,并且在完成充电后继续前往车辆原来的目的地,那么可以使用以下API:…...
现代CSS中的换行布局技术
在现代网页设计中,为了适应不同屏幕尺寸和设备类型,换行布局是一项重要的技术。通过合适的布局技术,我们可以实现内容的自适应和优雅的排版。本文将介绍CSS中几种常见的换行布局技术,探索它们的属性、代码示例和解析,帮…...
简单理解Python中的深拷贝与浅拷贝
I. 简介 深拷贝会递归的创建一个完全独立的对象副本,包括所有嵌套的对象,而浅拷贝只复制嵌套对象的引用,不复制嵌套对象本身。 简单来说就是两者都对原对象进行了复制,因此使用is运算符来比较新旧对象时,返回的都是F…...
C++之std::pair<uint64_t, size_t>应用实例(一百七十七)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...
前端打开后端返回的HTML格式的数据
前端打开后端返回的 HTML格式 的数据: 后端返回的数据格式如下示例: 前端通过 js 方式处理(核心代码如下) console.log(回调, path); // path 是后端返回的 HTML 格式数据// 必须要存进localstorage,否则会报错&am…...
How to deal with document-oriented data
Schema designData models for e-commerceNuts and bolts of databases, collection, and documents. Principles of schema design What are your application access pattern?Whats the basic unit of data? the basic unit of data is the BSON documentWhat are the ca…...
Http 状态码汇总
文章目录 Http 状态码汇总1xx(信息性状态码)2xx(成功状态码)3xx(重定向状态码)4xx(客户端错误状态码)5xx(服务器错误状态码) Http 状态码汇总 1xx(…...
mysql自定义实体类框架
根据表结构自动生产实体类和方法,根据反射与io生成,可自定义扩展方法 package com.digital.web.front; /*** pom依赖* <dependency>* <groupId>mysql</groupId>* <artifactId>mysql-connector-java</artifactId>* <version>5.1.27</ve…...
批量将Excel中的第二列内容从拼音转换为汉字
要批量将Excel中的第二列内容从拼音转换为汉字,您可以使用Python的openpyxl库来实现。下面是一个示例代码,演示如何读取Excel文件并将第二列内容进行拼音转汉字: from openpyxl import load_workbook from xpinyin import Pinyin # 打开Exce…...
消息推送:精准推送,提升运营效果,增添平台活力
对于app开发者而言,没有什么途径比消息推送更能直接、即时地触及目标用户群体了。消息推送与我们的日常生活息息相关,各种APP的状态和通知都通过消息推送来告知用户,引起用户的注意,吸引用户点开app。总而言之,推送服务…...
[保研/考研机试] KY43 全排列 北京大学复试上机题 C++实现
题目链接: 全排列https://www.nowcoder.com/share/jump/437195121692001512368 描述 给定一个由不同的小写字母组成的字符串,输出这个字符串的所有全排列。 我们假设对于小写字母有a < b < ... < y < z,而且给定的字符串中的字…...
Java将时间戳转化为特定时区的日期字符串
先上代码: ZonedDateTime dateTime ZonedDateTime.ofInstant(Instant.ofEpochMilli(System.currentTimeMillis()),zone ); //2019-12-01T19:01:4608:00String formattedDate dateTime.format(DateTimeFormatter.ofPattern("yyyy-MM-dd") ); //2019-12-…...
【算法挨揍日记】day03——双指针算法_有效三角形的个数、和为s的两个数字
611. 有效三角形的个数 611. 有效三角形的个数https://leetcode.cn/problems/valid-triangle-number/ 题目描述: 给定一个包含非负整数的数组 nums ,返回其中可以组成三角形三条边的三元组个数。 解题思路: 本题是一个关于三角形是否能成立…...
通过 kk 创建 k8s 集群和 kubesphere
官方文档:多节点安装 确保从正确的区域下载 KubeKey export KKZONEcn下载 KubeKey curl -sfL https://get-kk.kubesphere.io | VERSIONv3.0.7 sh -为 kk 添加可执行权限: chmod x kk创建 config 文件 KubeSphere 版本:v3.3 支持的 Kuber…...
感觉和身边其他人有差距怎么办?
虽然清楚知识需要靠时间沉淀,但在看到自己做不出来的题别人会做,自己写不出的代码别人会写时还是会感到焦虑怎么办? 你是否也因为自身跟周围人的差距而产生过迷茫,这份迷茫如今是被你克服了还是仍旧让你感到困扰? 下…...
【C语言基础】宏定义的用法详解
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
python基础语法Ⅰ
python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器,来进行一些算术…...
欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!
多连接 BLE 怎么设计服务不会乱?分层思维来救场! 作者按: 你是不是也遇到过 BLE 多连接时,调试现场像网吧“掉线风暴”? 温度传感器连上了,心率带丢了;一边 OTA 更新,一边通知卡壳。…...
aurora与pcie的数据高速传输
设备:zynq7100; 开发环境:window; vivado版本:2021.1; 引言 之前在前面两章已经介绍了aurora读写DDR,xdma读写ddr实验。这次我们做一个大工程,pc通过pcie传输给fpga,fpga再通过aur…...
