当前位置: 首页 > news >正文

深入探讨lowess算法:纯C++实现与局部加权多项式回归的数据平滑技术

引言

在统计学和数据科学中,有时我们面对的数据是嘈杂的、充满噪声的。为了更好地揭示数据的潜在趋势和结构,数据平滑技术成为了一个重要工具。lowess或称为局部加权多项式回归是其中的一种流行方法,它对每一个点给予一个权重,根据其到给定点的距离进行加权。

本文将重点探讨lowess算法的核心思想,并提供其纯C++的实现方法。我们还将对算法进行一些基本的优化和改进,使其在大数据场景下表现得更加出色。


1. lowess算法简介

局部加权散点平滑技术(LOWESS)是一种非参数方法,用于拟合数据系列,特别是当需要捕获数据的非线性趋势时。不同于传统的线性或多项式回归,LOWESS考虑到每个数据点的局部特性,使其能够更加敏感地捕获数据的变化。

2. 算法原理

lowess的基本思想是对数据集中的每一个点,都用其邻近的数据点进行多项式回归。这里的"邻近"是通过权重函数定义的,距离越近的点有更高的权重。

具体算法步骤如下:

  1. 对于数据集中的每一个点x_i:

    • 计算其与其他所有点的距离。
    • 基于距离,为每个点分配一个权重。
    • 使用加权的多项式回归拟合这些点。
    • 计算拟合多项式在x_i处的值。
  2. 重复以上步骤,直到收敛或达到预定的迭代次数。

3. 纯C++的实现

首先,让我们来定义数据结构和必要的函数:

#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>// 定义数据点结构
struct Point {double x;double y;
};// 计算两点间的距离
double distance(const Point& p1, const Point& p2) {return std::abs(p1.x - p2.x);
}// 权重函数
double weightFunction(double dist, double bandwidth) {return std::exp(-std::pow(dist/bandwidth, 2));
}// ...

这部分代码首先定义了一个表示数据点的结构,并为此定义了一个计算两点间距离的函数和一个计算权重的函数。

具体过程请下载完整项目


4. 加权多项式回归

对于每个数据点,我们需要进行加权多项式回归。这里我们选择一个简单的线性多项式回归作为例子。具体地说,我们尝试拟合以下形式的模型:

y=ax+by = ax + by=ax+b

其中,权重在回归中起到关键作用。

// 拟合加权线性回归的函数
void weightedLinearRegression(const std::vector<Point>& points, const std::vector<double>& weights, double& a, double& b) {double Wxy = 0, Wx = 0, Wy = 0, Wxx = 0, W = 0;for (size_t i = 0; i < points.size(); i++) {double x = points[i].x;double y = points[i].y;double w = weights[i];Wxy += w * x * y;Wx += w * x;Wy += w * y;Wxx += w * x * x;W += w;}a = (W * Wxy - Wx * Wy) / (W * Wxx - Wx * Wx);b = (Wy - a * Wx) / W;
}// ...

5. LOWESS算法核心

有了上面的工具函数,我们可以继续编写LOWESS的核心函数。

std::vector<double> lowess(const std::vector<Point>& points, double bandwidth, int iterations) {std::vector<double> smoothedY(points.size());for (int iter = 0; iter < iterations; iter++) {for (size_t i = 0; i < points.size(); i++) {std::vector<double> weights(points.size());for (size_t j = 0; j < points.size(); j++) {weights[j] = weightFunction(distance(points[i], points[j]), bandwidth);}double a, b;weightedLinearRegression(points, weights, a, b);smoothedY[i] = a * points[i].x + b;}}return smoothedY;
}// ...

在这部分代码中,我们首先为每个点计算了权重,然后使用这些权重进行加权线性回归。这个过程会迭代多次,直到数据平滑到满意的程度。


6. 总结和优化

纯C++的LOWESS实现提供了一个高效且直观的方式来平滑数据。然而,本文提供的方法仅是最基础的版本。在实际应用中,可能需要进一步优化以处理大规模数据集。

  1. 并行化:考虑到每个点的平滑操作是独立的,我们可以使用C++的多线程库来并行处理数据,从而大大提高算法的速度。

  2. 选择性平滑:对于大规模的数据集,我们可以考虑只对数据的子集进行平滑,而不是整个数据集。

  3. 更高阶的多项式回归:在某些情况下,线性多项式可能不足以捕捉数据的复杂性。此时,可以考虑二次或更高阶的多项式回归。


7. 如何使用纯C++ LOWESS算法

要使用上述的LOWESS实现,首先需要收集并整理你的数据。将数据组织成Point结构的列表,并为其提供一个合适的带宽值和迭代次数。

int main() {std::vector<Point> data = { /*... your data here ...*/ };// 运行LOWESS算法double bandwidth = 1.0;  // 选择合适的带宽值int iterations = 3;std::vector<double> smoothedValues = lowess(data, bandwidth, iterations);// 输出平滑后的数据for (size_t i = 0; i < data.size(); i++) {std::cout << data[i].x << ", " << smoothedValues[i] << std::endl;}return 0;
}

8. 优势与限制

LOWESS算法有其独特的优势:

  • 非参数性:这意味着它不需要预先假定数据符合某种特定的形式或分布。
  • 局部性:它能够敏感地捕捉到数据的局部特点和非线性趋势。

然而,LOWESS也有其局限性:

  • 计算复杂度:对于大数据集,算法可能会非常耗时。
  • 参数选择:带宽和迭代次数的选择对结果影响很大,但往往需要多次尝试来确定最佳参数。

9. 未来方向和其他技术

尽管LOWESS是一个强大的数据平滑工具,但在数据科学的快速发展中,还有其他许多方法和技术值得探索,例如深度学习的不同变体、高斯过程回归等。这些方法在处理特定类型的数据或问题时可能更有优势。

此外,使用纯C++实现LOWESS仅是众多可能的实现方法之一。Python、R等语言也有LOWESS的实现,而这些语言通常带有更为强大的数据处理和可视化工具。

结束语

LOWESS算法为数据科学家和研究者提供了一种灵活、直观的方式来观察和分析数据的底层结构。本文的纯C++实现为读者提供了一个入门的机会,但真正的深入理解和高效应用还需要大量的实践和经验积累。

最后,如有需要获取更多的细节或优化版本的代码,具体过程请下载完整项目


希望这篇文章能为你提供关于LOWESS算法和其C++实现的有用信息。随着技术的发展,总有新的方法和工具出现,但基本的算法和思想往往有其持久的价值。

相关文章:

深入探讨lowess算法:纯C++实现与局部加权多项式回归的数据平滑技术

引言 在统计学和数据科学中&#xff0c;有时我们面对的数据是嘈杂的、充满噪声的。为了更好地揭示数据的潜在趋势和结构&#xff0c;数据平滑技术成为了一个重要工具。lowess或称为局部加权多项式回归是其中的一种流行方法&#xff0c;它对每一个点给予一个权重&#xff0c;根…...

Sui安全篇|详解零知识证明 (ZKP) Groth16的可塑性

Sui Move允许用户使用Groth16进行高效验证任何非确定性多项式时间&#xff08;Non-deterministic Polynomial time &#xff0c;NP&#xff09;状态。Groth16是一种高效且广泛使用的零知识简洁非交互知识证明&#xff08;Zero-Knowledge Succinct Non-interactive Argument of …...

记录--webpack和vite原理

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 前言 每次用vite创建项目秒建好&#xff0c;前几天用vue-cli创建了一个项目&#xff0c;足足等了我一分钟&#xff0c;那为什么用 vite 比 webpack 要快呢&#xff0c;这篇文章带你梳理清楚它们的原理…...

Windows系统中使用bat脚本启动git bash 并运行指定命令 - 懒人一键git更新

目标 双击"autoGitPull.bat"&#xff0c;自动打开git bash&#xff0c;并cd到项目&#xff0c;逐个git pull&#xff0c;保留git bash窗口展示进度。 脚本 start "" "D:\Program Files\Git\git-bash.exe" -c "echo autoGitPull &&…...

elementui form组件出现英文提示

今天让解决一个bug&#xff0c;是表单组件提示词会出现英文。 问题情景如下&#xff1a; 有时会出现中文&#xff0c;有时会出现英文。 解决方法&#xff1a; 经查看&#xff0c;代码采用的是elementui的form组件&#xff0c;在el-form-item中使用了required属性&#xff0c;同…...

使用windows Api简单验证ISO9660文件格式,以及装载和卸载镜像文件

使用IIsoImageManager接口简单验证ISO镜像文件正确性,使用AttachVirtualDisk装载ISO镜像文件,和使用DetachVirtualDisk卸载,(只支持windows 8及以上系统) 导读 IIsoImageManager 验证ISO文件正确性AttachVirtualDisk 装载镜像文件DetachVirtualDisk 卸载镜像文件其他相关函…...

iPhone 15受益:骁龙8 Gen 3可能缺席部分安卓旗舰机

明年一批领先的安卓手机的性能可能与今年的机型非常相似。硅成本的上涨可能是原因。 你可以想象&#xff0c;2024年许多最好的手机都会在Snapdragon 8 Gen 3上运行&#xff0c;这是高通公司针对移动设备的顶级芯片系统的更新&#xff0c;尚未宣布。然而&#xff0c;来自中国的…...

理解持续测试,才算理解DevOps

软件产品的成功与否&#xff0c;在很大程度上取决于对市场需求的及时把控&#xff0c;采用DevOps可以加快产品交付速度&#xff0c;改善用户体验&#xff0c;从而有助于保持领先于竞争对手的优势。 作为敏捷开发方法论的一种扩展&#xff0c;DevOps强调开发、测试和运维不同团…...

使用OpenCV与深度学习从视频和图像中精准识别人脸: Python实践指南

第一部分: 引言与背景 人脸识别已经成为了当代技术领域中最热门和广泛应用的话题之一。从智能手机的解锁功能到机场的安全检查&#xff0c;人脸识别技术无处不在。在这篇文章中&#xff0c;我们将使用Python中的OpenCV库和深度学习模型&#xff0c;深入探讨如何从视频和图像中…...

面试之快速学习C++11-完美转发,nullptr, shared_ptr,unique_ptr,weak_ptr,shared_from_this

完美转发及其实现 函数模版可以将自己的参数完美地转发给内部调用的其他函数。所谓完美&#xff0c;即不仅能准确地转发参数的值&#xff0c;还能保证被转发参数的左右值属性不变引用折叠&#xff1a;如果任一引用为左值引用&#xff0c;则结果为左值引用&#xff0c;否则为右…...

android resoure资源图片颜色值错乱

最近androidstudio开发&#xff0c;添加一些颜色值或者drawable资源文件时&#xff0c;运行app,颜色值或者图片对应不上&#xff0c;暂时找不到原因&#xff0c;望告知。 暂时解决方法&#xff1a;...

leetcode第 357/358 场周赛

2817. 限制条件下元素之间的最小绝对差 可能别人有更好的解法&#xff0c;我这写法是不断往线段树中插入数值&#xff0c;每次先插入nums[i-x]&#xff0c;然后搜索&#xff08;1到i)中的最大值和(i到max)中的最小值去更新ans。 class Solution { public:struct node{int mx,…...

Jmeter 分布式性能测试避坑指南

在做后端服务器性能测试中&#xff0c;我们会经常听到分布式。那你&#xff0c;是否了解分布式呢&#xff1f;今天&#xff0c;我们就来给大家讲讲&#xff0c;在企业实战中&#xff0c;如何使用分布式进行性能测试&#xff0c;实战过程中&#xff0c;又有哪些地方要特别注意&a…...

基于SpringCloud的会议室预约系统Java基于微服务的会议室报修系统【源码+lw】

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、微信小程序、Python、Android、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&#x1f495…...

idea设置忽略大小写

1.点击file 2.点击settings 3.点击Editor选项 4.点击general选项 5.点击code completion 6.点击左上角match case...

re学习(35)攻防世界-no-strings-attached(动调)

参考文章&#xff1a;re学习笔记&#xff08;28&#xff09;攻防世界-re-no-strings-attached_Forgo7ten的博客-CSDN博客 攻防世界逆向入门题之no-strings-attached_攻防世界 no-strings-attached_沐一 林的博客-CSDN博客 本人题解&#xff1a; 扔入Exepeinfo中查壳和其他信息…...

STM32 F103C8T6学习笔记8:0.96寸单色OLED显示屏显示字符

使用STM32F103 C8T6 驱动0.96寸单色OLED显示屏: OLED显示屏的驱动&#xff0c;在设计开发中OLED显示屏十分常见&#xff0c;因此今日学习一下。一篇文章从程序到显示都讲通。 文章提供源码、原理解释、测试工程下载&#xff0c;测试效果图展示。 目录 OLED驱动原理—IIC通信…...

vscode的配置和使用

1.侧边栏调整大小 放大&#xff1a;View -> Appearance -> Zoom in&#xff08;快捷键Ctrl &#xff09; 缩小&#xff1a;View -> Appearance -> Zoom out&#xff08;快捷键Ctrl -&#xff09; 侧边栏字体调整到合适大小后&#xff0c;可以按下一步调整代码区…...

SpringBoot统⼀功能处理

前言&#x1f36d; ❤️❤️❤️SSM专栏更新中&#xff0c;各位大佬觉得写得不错&#xff0c;支持一下&#xff0c;感谢了&#xff01;❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 本章是讲Spring Boot 统⼀功能处理模块&#xff0c;也是 AOP 的实战环节&…...

LeetCode 每日一题 2023/8/14-2023/8/20

记录了初步解题思路 以及本地实现代码&#xff1b;并不一定为最优 也希望大家能一起探讨 一起进步 目录 8/14 617. 合并二叉树8/15 833. 字符串中的查找与替换8/16 2682. 找出转圈游戏输家8/17 1444. 切披萨的方案数8/18 1388. 3n 块披萨8/19 2235. 两整数相加8/20 8/14 617. 合…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

python基础语法Ⅰ

python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器&#xff0c;来进行一些算术…...