当前位置: 首页 > news >正文

LeetCode 每日一题 2023/8/14-2023/8/20

记录了初步解题思路 以及本地实现代码;并不一定为最优 也希望大家能一起探讨 一起进步


目录

      • 8/14 617. 合并二叉树
      • 8/15 833. 字符串中的查找与替换
      • 8/16 2682. 找出转圈游戏输家
      • 8/17 1444. 切披萨的方案数
      • 8/18 1388. 3n 块披萨
      • 8/19 2235. 两整数相加
      • 8/20


8/14 617. 合并二叉树

dfs深搜

class TreeNode(object):def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = right
def mergeTrees(root1, root2):""":type root1: TreeNode:type root2: TreeNode:rtype: TreeNode"""def func(n1,n2):if not n1:return n2if not n2:return n1node = TreeNode(n1.val+n2.val)node.left = func(n1.left,n2.left)node.right = func(n1.right,n2.right)return nodereturn func(root1,root2)

8/15 833. 字符串中的查找与替换

op存放该位置能替换的数值
从头遍历每个位置

def findReplaceString(s, indices, sources, targets):""":type s: str:type indices: List[int]:type sources: List[str]:type targets: List[str]:rtype: str"""from collections import defaultdictn = len(s)op = defaultdict(list)for i,ind in enumerate(indices):op[ind].append(i)ans = []i = 0while i<n:tag = Falseif i in op:for ind in op[i]:if s[i:i+len(sources[ind])]==sources[ind]:tag = Trueans.append(targets[ind])i+=len(sources[ind])breakif not tag:ans.append(s[i])i+=1return "".join(ans)

8/16 2682. 找出转圈游戏输家

模拟

def circularGameLosers(n, k):""":type n: int:type k: int:rtype: List[int]"""do = [False]*ncur = 0i=1while not do[cur]:do[cur]=Truecur+=i*kcur%=ni+=1return [i+1 for i in range(n) if not do[i]]

8/17 1444. 切披萨的方案数

动态规划 dp[k][i][j] 表示把坐标(i,j)右下方切割成k块的方案

def ways(pizza, k):""":type pizza: List[str]:type k: int:rtype: int"""mod = 10**9+7m,n=len(pizza),len(pizza[0])apples = [[0]*(n+1) for _ in range(m+1)]dp = [[[0 for j in range(n)] for i in range(m)] for _ in range(k+1)]for i in range(m-1,-1,-1):for j in range(n-1,-1,-1):apples[i][j] = apples[i][j+1]+apples[i+1][j]-apples[i+1][j+1]+(pizza[i][j]=='A')if apples[i][j]>0:dp[1][i][j] = 1 else:dp[1][i][j] = 0for t in range(1,k+1):for i in range(m):for j in range(n):for ii in range(i+1,m):if apples[i][j]>apples[ii][j]:dp[t][i][j] = (dp[t][i][j]+dp[t-1][ii][j])%modfor jj in range(j+1,n):if apples[i][j]>apples[i][jj]:dp[t][i][j] = (dp[t][i][j]+dp[t-1][i][jj])%modreturn dp[k][0][0]

8/18 1388. 3n 块披萨

可转换为在3n个数中 选择n个不相邻的数 和最大
动态规划dp[i][j]表示前i个数选择j个不相邻的数 最大和

def maxSizeSlices(slices):""":type slices: List[int]:rtype: int"""def func(slices):m = len(slices)n = (len(slices)+1)//3dp = [[float("-inf") for _ in range(n+1)] for _ in range(m)]dp[0][0] = 0dp[0][1] = slices[0]dp[1][0] = 0dp[1][1] = max(slices[0],slices[1])for i in range(2,m):dp[i][0] = 0for j in range(1,n+1):dp[i][j] = max(dp[i-1][j],dp[i-2][j-1]+slices[i])return dp[m-1][n]return max(func(slices[1:]),func(slices[0:-1]))

8/19 2235. 两整数相加

如题相加

def sum(num1, num2):""":type num1: int:type num2: int:rtype: int"""return num1+num2

8/20


相关文章:

LeetCode 每日一题 2023/8/14-2023/8/20

记录了初步解题思路 以及本地实现代码&#xff1b;并不一定为最优 也希望大家能一起探讨 一起进步 目录 8/14 617. 合并二叉树8/15 833. 字符串中的查找与替换8/16 2682. 找出转圈游戏输家8/17 1444. 切披萨的方案数8/18 1388. 3n 块披萨8/19 2235. 两整数相加8/20 8/14 617. 合…...

进入微服务阶段后的学习方法

微服务SpringCloud学习的特点 陌生&#xff0c;多&#xff0c;复杂。 技术陌生&#xff0c;技术栈多&#xff0c;实现复杂。 学习方式 对于每一个组件&#xff1a; 1.知道是什么、有什么用 2.知道操作步骤&#xff08;跟着讲义操作即可&#xff09;&#xff0c;包括&#…...

C/C++中const关键字详解

为什么使用const&#xff1f;采用符号常量写出的代码更容易维护&#xff1b;指针常常是边读边移动&#xff0c;而不是边写边移动&#xff1b;许多函数参数是只读不写的。const最常见用途是作为数组的界和switch分情况标号(也可以用枚举符代替)&#xff0c;分类如下&#xff1a;…...

【2023新教程】树莓派4B开机启动-树莓派第一次启动-树莓派不使用显示器启动-树莓派从购买到启动一步一步完全版!

背景 闲来无事&#xff0c;在咸鱼上买了一个树莓派4B。买来配件都十分齐全&#xff0c;于是就想着启动来测试一下。下面是树莓派无显示器第一次启动的全过程&#xff0c;包含安装系统。 网上的教程大多需要额外使用显示器、鼠标、键盘之类的外设。然而&#xff0c;树莓派本身就…...

LA@2@1@线性方程组和简单矩阵方程有解判定定理

文章目录 矩阵方程有解判定定理线性方程组有解判定特化:齐次线性方程组有解判定推广:矩阵方程 A X B AXB AXB有解判定证明推论 矩阵方程有解判定定理 线性方程组有解判定 线性方程组 A x b A\bold{x}\bold{b} Axb有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,…...

如何使用ChatGPT创作一个小说式的虚构的世界

世界构建也许是小说写作中最重要的一环&#xff0c;但也可能非常耗时。让ChatGPT加快这一过程吧。 写小说最棒的一点就是有机会从零开始创造一个新世界。你可以创造超凡脱俗的景观&#xff0c;赋予人物魔法。神话故事可以存在于你小说中的现实世界&#xff0c;而传统可以帮助你…...

用于量子通信和互联网的光量子芯片

近年来&#xff0c;新兴的光量子芯片在量子通信和量子互联网领域取得了重大进展。光量子芯片芯片具有可扩展、稳定和低成本等特点&#xff0c;为微型化应用开辟了新的可能性。 7月14日&#xff0c;一篇发表在《light: science & applications》的文章概述了用于量子通信的光…...

11. Vuepress2.x 关闭夜间模式

修改 docs/.vuepress/config.ts 配置文件 设置 themeConfig.darkMode属性详见 官网 module.exports {host: localhost, // ipport: 8099, //端口号title: 我的技术站, // 设置网站标题description: 描述&#xff1a;我的技术站,base: /, //默认路径head: [// 设置 favor.ico&a…...

netty实现websocket通信

调用注意&#xff1a; 1、端口一定要是可以访问的。 2、依赖必须注意和其他版本冲突&#xff0c;比如redis的springboot starter包&#xff0c;会与5.0版本冲突。 <netty.version>4.1.74.Final</netty.version> <dependency><groupId>io…...

两个list如何根据一个list中的属性去过滤掉另一个list中不包含这部分的属性,用流实现

你可以使用Java 8的流来实现这个功能。假设你有两个包含对象的List&#xff0c;每个对象有一个属性&#xff0c;你想根据一个List中的属性值来过滤掉另一个List中不包含这个属性值的对象。下面是一种使用流的方式来实现这个功能 import java.util.ArrayList; import java.util…...

Blender 混合现实3D模型制作指南【XR】

本教程分步展示如何&#xff1a; 减少 3D 模型的多边形数量&#xff0c;使其满足 Microsoft Dynamics 365 Guides 和使用 Microsoft Power Apps 创建的应用程序中包含的混合现实组件的特定性能目标的性能需求。将 3D 模型的多种材质&#xff08;颜色&#xff09;组合成可应用于…...

kubeasz在线安装K8S集群单master集群(kubeasz安装之二)

一、介绍 Kubeasz 是一个基于 Ansible 自动化工具&#xff0c;用于快速部署和管理 Kubernetes 集群的工具。它支持快速部署高可用的 Kubernetes 集群&#xff0c;支持容器化部署&#xff0c;可以方便地扩展集群规模&#xff0c;支持多租户&#xff0c;提供了强大的监控和日志分…...

『C语言』数据在内存中的存储规则

前言 小羊近期已经将C语言初阶学习内容与铁汁们分享完成&#xff0c;接下来小羊会继续追更C语言进阶相关知识&#xff0c;小伙伴们坐好板凳&#xff0c;拿起笔开始上课啦~ 一、数据类型的介绍 我们目前已经学了基本的内置类型&#xff1a; char //字符数据类型 short …...

基于ssm+vue的新能源汽车在线租赁管理系统源码和论文PPT

基于ssmvue的新能源汽车在线租赁管理系统源码和论文PPT010 开发环境&#xff1a; 开发工具&#xff1a;idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;java ssm tomcat8.5 摘 要 随着科学技术的飞速发展&#xff0…...

深入解析IDS/IPS与SSL/TLS和网络安全

目录 防火墙 IDS IPS DMZ VPN VPS SSL/TLS 动态IP 静态IP 防火墙 防火墙是一种网络安全设备&#xff0c;用于监控和控制网络流量&#xff0c;保护网络免受未经授权的访问、恶意攻击和威胁。防火墙可以基于规则进行数据包过滤&#xff0c;允许或阻止特定类型的流量通过…...

在Visual Studio上,使用OpenCV实现人脸识别

1. 环境与说明 本文介绍了如何在Visual Studio上&#xff0c;使用OpenCV来实现人脸识别的功能 环境说明 : 操作系统 : windows 10 64位Visual Studio版本 : Visual Studio Community 2022 (社区版)OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版) 实现效果如图所示&#xff0…...

搭建openGauss 5.0 一主一从复制集群

openGauss是一款支持SQL2003标准语法&#xff0c;支持主备部署的高可用关系型国产数据库。 多种存储模式支持复合业务场景&#xff0c;新引入提供原地更新存储引擎。NUMA化数据结构支持高性能。Paxos一致性日志复制协议&#xff0c;主备模式&#xff0c;CRC校验支持高可用。支…...

Docker碎碎念

docker和虚拟机的区别 虚拟机&#xff08;VM&#xff09;是通过在物理硬件上运行一个完整的操作系统来实现的。 每个虚拟机都有自己的内核、设备驱动程序和用户空间&#xff0c;它们是相互独立且完全隔离的。 虚拟机可以在不同的物理服务器之间迁移&#xff0c;因为它们是以整…...

【C++】extern

目录 1. 变量声明和定义的关系 2. 默认状态下&#xff0c;const对象仅在文件内有效 3. 链接指示&#xff1a;extern "C" 3.1 声明一个非C的函数 3.2 链接指示与头文件 3.3 指向extern "C"函数的指针 3.4 链接指示对整个声明都有效 3.5 导出C函数到…...

2023全网Mysql 合集(25w字)附课程 从安装到高级,实战

mysql学习 1.安装mysql 安装教程 2.mysql的详细学习教程 mysql的详细教程 3.mysql 的高级优化 MySQL高级篇&#xff08;SQL优化、索引优化、锁机制、主从复制&#xff09; 4.MySQL 面试 MySQL数据库面试题总结 二.mysql实战 一、创建数据表并插入数据 1、学生表 Stud…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...