当前位置: 首页 > news >正文

『C语言』数据在内存中的存储规则

在这里插入图片描述

前言

小羊近期已经将C语言初阶学习内容与铁汁们分享完成,接下来小羊会继续追更C语言进阶相关知识,小伙伴们坐好板凳,拿起笔开始上课啦~


一、数据类型的介绍

我们目前已经学了基本的内置类型:

char       //字符数据类型
short      //短整型
int        //整形
long       //长整型
long long  //更长的整形
float      //单精度浮点数
double     //双精度浮点数

类型的基本归类

  1. 整形家族
char:unsigned charsigned char
short:unsigned short[int]signed short[int]
int:unsigned intsigned int
long:unsigned long[int]signed long[int]

unsigned:无符号数类型

当一个数是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。

signed:有符号数类型

当一个数是有符号类型时,最高数称为“符号位”。符号位为1时,表示该数为负数,为0时表示为正数。

注意:有符号类型可以表示正数,负数或0,无符号类型仅能表示大于等于0的值

  1. 浮点型家族
float
double
  1. 构造类型:
       //数组类型
struct //结构体类型
enum   //枚举类型
union //联合类型
  1. 指针类型:
int* p;
char* p;
float* p;
void* p;
  1. 空类型:
void//(空类型)

二、整型在内存中的存储

以整型int为例,我们都知道常见的编译器中int占四个字节,那么计算机中这四个字节是如何将数据存储下来的呢?
那我们先了解一下机器数真值的概念,再去了解原码,反码,补码的概念

2.1 机器数

一个数在计算机中的二进制表示形式,叫做这个数的机器数。机器数是带符号的,在计算机中 用机器数的最高位存放符号,正数为0,负数为1。

例如:

+ 3的机器数:0000 0011
- 3的机器数:1000 0011

2.2 真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例如:

0000 0001的真值 = +000 0001 = +1
1000 0001的真值 = -000 0001 = -1

2.3 原码、反码、补码

对于一个数,计算机要使用一定的编码方式进行存储,原码、反码、补码是机器存储一个具体数字的编码方式。

三种方式均有符号位数值位两部分,符号位都是0表示“正数”,1表示“负数”,而数值位分正负数而定。

正数的原码、反码、补码都相同,负数的原码、反码、补码各不相同

原码:
直接将数值按照正负数的形式翻译成二进制就可以得到原码
反码:
将原码的符号位不变,其他位次按位取反
补码:
反码符号位不变,数值为+1

反码回到原码的两种方式
1、补码-1后 取反得到原码
2、补码取反后 +1得到原码

对于整形来说:数据存放内存中其实存放的是补码,那这又是为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数
值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器 )此外,补码与原码相
互转换,其运算过程是相同的,不需要额外的硬件电路。

我们看看在内存中的存储:
在这里插入图片描述
我们知道内存中a和b存储的是补码,但我们发现存储的顺序有点不对劲。
-10在内存中存储应该是FFFFFFF6,而我们看到的是F6FFFFFF。
这里小羊呢,就为铁汁们了解一下大小端

2.4 大小端介绍

什么是大小端:

大端存储模式:指数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中
小端存储模式:指数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中

例如:

数字0x12 34 56 78在内存中:

大端模式:(我们通常直观上认为的模式)

        低地址 --------------------> 高地址0x12  |  0x34  |  0x56  |  0x78

小端模式:

        低地址 --------------------> 高地址0x78  |  0x56  |  0x34  |  0x12

** 为什么会有大端和小端呢?**
因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

如何判断大小端的代码:

#include<stdio.h>
int main()
{int i = 1;//0000 0001char* p = &i;if (*p == 1)//若第一个地址存的是1,即为小端,反则大端printf("小端");elseprintf("大端";return 0;
}

自定义函数测试:

#include<stdio.h>int check_sys()
{int a = 1;char* p = (char*)&a;if (*p == 1)return 1;elsereturn 0;
}int main()
{if (check_sys() == 1)printf("小端");elseprintf("大端");return 0;
}

三、浮点数在内存中的存储

#include<stdio.h>
int main()
{int n = 9;float* p = (float*)&n;printf("n的值为:%d\n", n);printf("*p的值为:%f\n", *p);*p = 9.0;printf("n的值为:%d\n", n);printf("*p的值为:%f\n", *p);return 0;
}

我们先试着猜一下结果
输出显示:
在这里插入图片描述
怎么样,这个结果是不是有点出乎意料!那么就跟着小羊来学习浮点数的存储规则吧。

3.1浮点数存储规则

浮点数存储形式:

根据国际标准IEEE(电子和电子工程协会)754,任意一个二进制浮点数V可以表示为下面的形式:

(-1) ^ S * M * 2 ^ E

 1.  (-1) ^ S 表示符号位,当S=0时,V为正数;当S=1时,V为负数
 2.  M 表示有效数字,且1 <= M <2
 3.  2 ^ E表示指数位

例如:

  1. 十进制的5.0,写成二进制是0101 ------> 1.10x2^2
    可以得出s=0,M=1.01,E=2
  2. 十进制的-7.0,写成二进制是0111 ------->1.11x2^2
    可以得出s=-1,M=1.11,E=2

IEEE 754 规定:

对于 32 位的浮点数(单精度),最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23位为有效数字 M 。

在这里插入图片描述

对于 64 位的浮点数(双精度),最高的 1 位是符号位S,接着的 11 位是指数 E ,剩下的 52 位为有效数字 M 。
在这里插入图片描述
IEEE 754 对有效数字** M **和指数 E ,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的xxxxxx部分。比如保存 1.01 的时候,只保存01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32 位浮点数为例,留给M 只有 23 位,将第一位的1 舍去后等于可以保存 24 位有效数字。

至于指数 E ,情况就比较复杂。首先, E 为一个无符号整数( unsigned int )
这意味着,如果 E 为 8 位,它的取值范围为 0~255 ;如果 E 为 11 位,它的取值范围为 0~2047 。但是我们知道,科学计数法中的E 是可以出现负数的,所以IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数是127 ;对于 11 位的 E ,这个中间数是1023 。比如 2^10的 E 是 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即10001001。

3.2 浮点型的读取

我们知道浮点型在内存中的存储后,将步骤反过来就是取出的过程。
1、有效数字M:

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存小数部分。比如保存1.0110001101时,只保存0110001101,后面的位数补0就可以了,等到读取的时候,再把第一位的1补上去。

2、指数E

E为一个无符号整数(unsigned int)根据指数域不同取值分为一下三种情况:

1)E不全为0或不全为1(规格化值)

这是最常见情况,取出内存中的数时,指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

2)E全为0(非规格化值)

这时,浮点数的指数E等于1-127(或1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxxx的小数。这样做是为了表示正负零,以及接近于0的很小的数字。

3)E全为1(特殊数值)

当指数域全为1时属于这种情形。此时,如果小数域全为0且符号域S=0,则表示正无穷,如果小数域全为0且符号域S=1,则表示负无穷。如果小数域不全为0时,浮点数将被解释为NaN, 即不是一个数(Not a Number)

解释前面的题目

整形9以浮点型打印
整形存储,浮点型打印
0000  0000 0000 0000 0000 0000 0000 1001
浮点型读取:
s=0,M=000 0000 0000 0000 0000 0110,E=0000 0000(E全为0)
所以结果为:0.0000(近于0的很小的数字)现在看例题的第二部:
浮点数9.0以整形打印
9.0 -> 1001.0 -> (-1)^0*1.001*2^3 -> s=0,M=1.001,E=3+127=130
所以第一位的符号位s=0,有效数字M为001后面在加200,凑满23位,指数E为3+127=130,即10000010
所以写成S+E+M:
0 10000010 001 0000 0000 0000 0000 000032位的二进制数,还原成十进制,正是1091567616

总结

希望看完这篇文章对铁汁们有所帮助,小羊后续还会持续更新C语言的学习知识,希望小伙伴们给个支持,来个一键三连~
在这里插入图片描述

相关文章:

『C语言』数据在内存中的存储规则

前言 小羊近期已经将C语言初阶学习内容与铁汁们分享完成&#xff0c;接下来小羊会继续追更C语言进阶相关知识&#xff0c;小伙伴们坐好板凳&#xff0c;拿起笔开始上课啦~ 一、数据类型的介绍 我们目前已经学了基本的内置类型&#xff1a; char //字符数据类型 short …...

基于ssm+vue的新能源汽车在线租赁管理系统源码和论文PPT

基于ssmvue的新能源汽车在线租赁管理系统源码和论文PPT010 开发环境&#xff1a; 开发工具&#xff1a;idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;java ssm tomcat8.5 摘 要 随着科学技术的飞速发展&#xff0…...

深入解析IDS/IPS与SSL/TLS和网络安全

目录 防火墙 IDS IPS DMZ VPN VPS SSL/TLS 动态IP 静态IP 防火墙 防火墙是一种网络安全设备&#xff0c;用于监控和控制网络流量&#xff0c;保护网络免受未经授权的访问、恶意攻击和威胁。防火墙可以基于规则进行数据包过滤&#xff0c;允许或阻止特定类型的流量通过…...

在Visual Studio上,使用OpenCV实现人脸识别

1. 环境与说明 本文介绍了如何在Visual Studio上&#xff0c;使用OpenCV来实现人脸识别的功能 环境说明 : 操作系统 : windows 10 64位Visual Studio版本 : Visual Studio Community 2022 (社区版)OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版) 实现效果如图所示&#xff0…...

搭建openGauss 5.0 一主一从复制集群

openGauss是一款支持SQL2003标准语法&#xff0c;支持主备部署的高可用关系型国产数据库。 多种存储模式支持复合业务场景&#xff0c;新引入提供原地更新存储引擎。NUMA化数据结构支持高性能。Paxos一致性日志复制协议&#xff0c;主备模式&#xff0c;CRC校验支持高可用。支…...

Docker碎碎念

docker和虚拟机的区别 虚拟机&#xff08;VM&#xff09;是通过在物理硬件上运行一个完整的操作系统来实现的。 每个虚拟机都有自己的内核、设备驱动程序和用户空间&#xff0c;它们是相互独立且完全隔离的。 虚拟机可以在不同的物理服务器之间迁移&#xff0c;因为它们是以整…...

【C++】extern

目录 1. 变量声明和定义的关系 2. 默认状态下&#xff0c;const对象仅在文件内有效 3. 链接指示&#xff1a;extern "C" 3.1 声明一个非C的函数 3.2 链接指示与头文件 3.3 指向extern "C"函数的指针 3.4 链接指示对整个声明都有效 3.5 导出C函数到…...

2023全网Mysql 合集(25w字)附课程 从安装到高级,实战

mysql学习 1.安装mysql 安装教程 2.mysql的详细学习教程 mysql的详细教程 3.mysql 的高级优化 MySQL高级篇&#xff08;SQL优化、索引优化、锁机制、主从复制&#xff09; 4.MySQL 面试 MySQL数据库面试题总结 二.mysql实战 一、创建数据表并插入数据 1、学生表 Stud…...

张俊林:由ChatGPT反思大语言模型(LLM)的技术精要

转自&#xff1a;https://mp.weixin.qq.com/s/eMrv15yOO0oYQ-o-wiuSyw 导读&#xff1a;ChatGPT出现后惊喜或惊醒了很多人。惊喜是因为没想到大型语言模型&#xff08;LLM,Large Language Model&#xff09;效果能好成这样&#xff1b;惊醒是顿悟到我们对LLM的认知及发展理念&a…...

单机编排docker compose

Docker之旅(8)-单机编排docker compose 当在宿主机启动较多的容器时候&#xff0c;如果都是手动操作会觉得比较麻烦而且容易出错&#xff0c; 并且每个容器之间也会有先后启动的顺序依赖等。这个时候推荐使用 docker 单机 编排工具 docker-compose&#xff0c;docker-compose …...

C++ 面向对象三大特性——多态

✅<1>主页&#xff1a;我的代码爱吃辣 &#x1f4c3;<2>知识讲解&#xff1a;C 继承 ☂️<3>开发环境&#xff1a;Visual Studio 2022 &#x1f4ac;<4>前言&#xff1a;面向对象三大特性的&#xff0c;封装&#xff0c;继承&#xff0c;多态&#xff…...

相同数字的积木游戏

题目描述 题目描述 小华和小薇一起通过玩积木游戏学习数学。 他们有很多积木&#xff0c;每个积木块上都有一个数字&#xff0c;积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排&#xff0c;请小薇找到这排积木中数字相同目所处位置最远的2块积木块&#xff0c;计算…...

安防监控视频云存储EasyCVR平台H.265转码功能更新:新增分辨率配置

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上&#xff0c;视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…...

图数据库_Neo4j学习cypher语言_常用函数_关系函数_字符串函数_聚合函数_数据库备份_数据库恢复---Neo4j图数据库工作笔记0008

然后再来看一些常用函数,和字符串函数,这里举个例子,然后其他的 类似 可以看到substring字符串截取函数 可以看到截取成功 聚合函数 这里用了一个count(n) 统计函数,可以看到效果 关系函数,我们用过就是id(r) 可以取出对应的r的id来这样.....

LeetCode150道面试经典题-- 加一(简单)

1.题目 给定一个由 整数 组成的 非空 数组所表示的非负整数&#xff0c;在该数的基础上加一。 最高位数字存放在数组的首位&#xff0c; 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外&#xff0c;这个整数不会以零开头。 2.示例 示例 1&#xff1a; 输入&am…...

Centos7 配置Docker镜像加速器

docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…...

微信小程序中pdf的上传、下载及excel导出

微信小程序中pdf的上传、下载及excel导出 pdf上传上传1&#xff1a;上传2&#xff1a; pdf下载导出excel pdf上传 上传两种方法&#xff1a; 上传1&#xff1a; 1.用vant weapp组件&#xff1a; //pdf上传--vant weapp组件 <view class"content"><van-u…...

Python_11 类的方法

一、查缺补漏 1. 实例方法必须用类实例化对象()来调用&#xff0c;用类来调用时会执行&#xff0c;但是self中不是实例化类地址而是传的字符串 二、类中的方法 1. 实例方法 1. 定义在类里面的普通方法(函数) 2. 第一个参数必须是类实例&#xff0c;在方法调用的时候会自动…...

CentOS系统环境搭建(一)——Centos7更新

Centos7更新 更新 yum&#xff08;包括centos内核&#xff09; yum update执行后&#xff0c;系统将更新到centos 7.9。 从这一篇文章开始开始&#xff0c;我将开始在centos系统环境搭建&#x1f517;https://blog.csdn.net/weixin_43982359/category_12411496.html中开始对C…...

Mariadb高可用MHA

目录 前言 一、概述 &#xff08;一&#xff09;、概念 &#xff08;二&#xff09;、组成 &#xff08;三&#xff09;、特点 &#xff08;四&#xff09;、工作原理 二、案例 &#xff08;一&#xff09;、构建MHA 1.所有节点ssh免密登录 2、MySQL主从复制 &#x…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...