当前位置: 首页 > news >正文

在Visual Studio上,使用OpenCV实现人脸识别

1. 环境与说明

本文介绍了如何在Visual Studio上,使用OpenCV来实现人脸识别的功能

环境说明 :

  • 操作系统 : windows 10 64位
  • Visual Studio版本 : Visual Studio Community 2022 (社区版)
  • OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版)

实现效果如图所示,识别到的人脸会用红框框出来 :

在这里插入图片描述

2. 配置Visual Studio环境

这部分详见我的另一篇博客 : Visual Studio 2022 cmake配置opencv开发环境

最终配置好后,能够在Visual Studio中正常调用OpenCV,运行CMake项目(C++程序)
在这里插入图片描述

3. 实现摄像头预览

这部分要用到VideoCapture这个类,VideoCapture既支持从视频文件读取,也支持直接从摄像机等监控器中读取,还可以读取 IP 视频流,要想获取视频需要先创建一个 VideoCapture 对象来打开相机,然后就可以来操作视频帧了。

我们将项目代码修改为如下内容

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{VideoCapture capture;//打开相机,这个传入的相机ID为0capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}//Mat矩阵,用来存一张图片Mat frame;while (true){//从capture中取数据,将画面输出到frame矩阵里面capture >> frame; if (frame.empty()){cout << "读取摄像头数据失败\n" << endl;}imshow("摄像头", frame); //显示图像if (waitKey(30) == 27) //按下ESC键退出程序{break;}}return 0;
}

运行程序,效果如下所示

在这里插入图片描述

4. 转化为灰度图像

接下来我们需要将图片转化为灰度图,为什么要进行灰度化处理呢 ? 主要有以下几个作用,提高人脸识别的准确性和可靠性

  • 简化图像处理:灰度化可以将彩色图像转化为黑白图像,使得处理更加简单。彩色图像包含三个通道(红、绿、蓝),而灰度图像只有一个通道,使得处理更加快速和高效。
  • 消除颜色信息:人脸识别对于颜色信息并不是非常敏感,而更关注形状和轮廓等特征。因此,通过灰度化处理,可以消除颜色信息对于后续处理的影响。
  • 提高处理性能:灰度化处理可以减少计算量,提高处理性能。在人脸识别过程中,对每个像素进行颜色计算会消耗大量计算资源,而灰度化处理只需要对每个像素的亮度进行计算,减少了计算量。
  • 突出图像特征:灰度化处理可以突出图像中的边缘和纹理等特征。这些特征对于人脸识别非常关键,可以帮助算法更好地识别人脸。

进行灰度化处理我们需要调用void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );,这里src是我们输入的图像,dst是我们要输出的图像,code需要传COLOR_BGR2GRAY,表示将BGR转化为灰度图。

要注意,在OpenCV中,是BGR排列方式,而不是RGB排列。

具体完整代码如下

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像while (true){//从capture中取数据,将画面输出到frame矩阵里面capture >> frame; if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;return -1;}imshow("摄像头", frame); //显示彩色图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRGimshow("灰度化", grayFrame); //显示灰色图像if (waitKey(30) == 27) //ESC键{break;}}return 0;
}

运行程序,效果如下所示,左边的是彩色画面,右边的是黑白画面

在这里插入图片描述

5. 直方图均衡化处理

接着,要进行直方图均衡化处理,为什么要进行这一步操作呢 ? 主要有以下几个作用,提高人脸识别的准确性和可靠性

  • 提高对比度:直方图均衡化通过重新分布图像像素的灰度级,将原始图像中的灰度级分布变得更加均匀。这样做可以增强图像的对比度,使得人脸的特征更加清晰可见。
  • 消除光照变化:人脸识别中的一个挑战是光照变化对人脸图像的影响。直方图均衡化可以消除光照变化,使得人脸图像在不同光照条件下具有一致的亮度和对比度。
  • 提高图像质量:直方图均衡化可以改善图像的质量,去除图像中的噪声和伪影。这对于后续的人脸特征提取和匹配非常重要,可以提高人脸识别的准确性和鲁棒性。
  • 增强细节信息:直方图均衡化可以增强图像的细节信息,使得人脸图像中的纹理和特征更加明显。这对于人脸识别算法的性能至关重要,可以提高人脸识别的准确率和鲁棒性。

直方图均衡化处理需要调用void equalizeHist( InputArray src, OutputArray dst);src是输入的图像,需要是单通道的灰度图,dst是我们输出的图像。

具体完整代码如下

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像Mat equalizeFrame; //直方图while (true){capture >> frame; //从capture中取数据,将画面输出到frame矩阵里面if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;return -1;}imshow("摄像头", frame); //显示图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRGimshow("灰度化", grayFrame); //显示图像//直方图均衡化,用来增强图像对比度,从而让轮廓更加明显equalizeHist(grayFrame, equalizeFrame);imshow("直方图", equalizeFrame);if (waitKey(30) == 27) //ESC键{break;}}return 0;
}

运行程序,效果如下所示,最右边的是经过直方图均衡化处理后的
在这里插入图片描述

6. 加载级联分类器

级联分类器CascadeClassifier的作用是进行目标检测。它是一种基于机器学习的分类器,通过训练多个弱分类器来识别目标物体。这些弱分类器层层级联,形成一个级联分类器,能够快速准确地检测出图像中的目标物体。

级联分类器通常用于人脸检测,可以通过训练来识别人的面部特征,如眼睛、鼻子、嘴巴等,从而识别人脸并定位人脸的位置。在OpenCV中,CascadeClassifier类提供了一个方便的接口,可以加载预训练的级联分类器,并进行目标检测操作。

首先我们要去加载级联分类器文件(xml文件),这些文件位于D:\Developer\opencv4.8.0\opencv\build\etc目录下,这里我们用的是haarcascade这种基于梯度提升决策树的分类器 (另一种lbpcascade是一种基于局部二值模式LBP的分类器)

haarcascade目录下,我们可以看到haarcascade_frontalface_alt.xml这个文件,就是我们需要的,用于人脸识别的级联分类器了。
在这里插入图片描述
所以,我们加载级联分类器的时候,去指定这个路径D:\Developer\opencv4.8.0\opencv\build\etc\haarcascades\haarcascade_frontalface_alt.xml,需要注意的是,放到代码里,这里的要将\改为/ (或者改为\\也行)。如果不改,那么路径不对,级联分类器会读取出错。

具体代码如下

int main()
{CascadeClassifier face_CascadeClassifier;if (!face_CascadeClassifier.load("D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml")) {cout << "级联分类器加载失败!\n" << endl;return -1;}//这里省略了原本其他的代码 ...
}

7. 进行人脸检测

接下来我们就要进行人脸检测了,人脸检测需要调用detectMultiScale方法,第一个参数 image 需要传入我们刚才处理后的直方图,第二个参数objects会返回所有检测出来的人脸的坐标。

void detectMultiScale( InputArray image,CV_OUT std::vector<Rect>& objects,double scaleFactor = 1.1,int minNeighbors = 3, int flags = 0,Size minSize = Size(),Size maxSize = Size() );

还有一个rectangle方法,用来在得到人脸坐标之后,进行画框。第一个参数img代表要在哪个图像上画框,第二个参数rec表示框的坐标,第三个参数color表示画框的颜色。

void rectangle(InputOutputArray img, Rect rec,const Scalar& color, int thickness = 1,int lineType = LINE_8, int shift = 0);

主要代码如下所示

std::vector<Rect> faces;
face_CascadeClassifier.detectMultiScale(grayFrame, faces);  //检测人脸for (size_t i = 0; i < faces.size(); i++)
{rectangle(frame,faces[i],Scalar(0,0,255)); //在人脸的位置画红色的框
}

来看一下完整代码

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{//加载级联分类器CascadeClassifier face_CascadeClassifier;if (!face_CascadeClassifier.load("D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml")) {cout << "级联分类器加载失败!\n" << endl;return -1;}VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像Mat equalizeFrame; //直方图while (true){capture >> frame; //从capture中取数据,将画面输出到frame矩阵里面if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;}//imshow("摄像头", frame); //显示图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRG//imshow("灰度化", grayFrame); //显示图像//直方图均衡化,用来增强图像对比度,从而让轮廓更加明显equalizeHist(grayFrame, equalizeFrame);//imshow("直方图", equalizeFrame);std::vector<Rect> faces;face_CascadeClassifier.detectMultiScale(grayFrame, faces);  //检测人脸for (size_t i = 0; i < faces.size(); i++){rectangle(frame,faces[i],Scalar(0,0,255));}imshow("摄像头", frame); //显示图像if (waitKey(30) == 27) //ESC键{break;}}return 0;
}

运行程序,来看一下效果

可以看到,人脸已经检测出来了,并对人脸进行了画框。但是可以画面非常的卡顿,因为人脸检测是非常耗时的,可能需要500毫秒甚至1-2秒时间,这里每一帧都去检测人脸,导致了异常卡顿。所以这种方式只适合用来检测静态图像,并不适合用作实时的摄像头人脸跟踪检测。

8. 实现实时人脸跟踪检测

8.1 OpenCV Android Demo

那我们需要来怎么做呢 ? 其实我们可以来看一下官方的示例,我们要去下载官方的Android包,里面有Android的官方示例。

在这里插入图片描述

8.2 DetectionBasedTracker_jni.cpp

我们下载解压后,可以在OpenCV-android-sdk\samples\face-detection\jni目录下找到DetectionBasedTracker_jni.cpp这个文件
在这里插入图片描述
在里面的nativeCreateObject方法里,我们可以发现其调用了这几句代码
在这里插入图片描述

8.3 CascadeDetectorAdapter

CascadeDetectorAdapter是一个适配器类,用于将CascadeClassifierDetector接口适配起来,从而用于检测人脸。

再来看一下CascadeDetectorAdapter这个类,里面的detect方法就是用来检测人脸的
在这里插入图片描述

8.4 DetectorAgregator

然后来看一下第三行代码中的DetectorAgregator,这里面有tracker = makePtr<DetectionBasedTracker>(mainDetector, trackingDetector, DetectorParams);这行代码是我们需要的,用来传入mainDetectortrackingDetector,生成一个tracker对象。
在这里插入图片描述

8.5 开始重新编写代码

这里我们将原来写的人脸检测的代码删除了,代码恢复到了刚配置好OpenCV的初始状态,然后将CascadeDetectorAdapter这个类的代码复制到我们的项目中

class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
{
public:CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):IDetector(),Detector(detector){CV_Assert(detector);}void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects){Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);}virtual ~CascadeDetectorAdapter(){}private:CascadeDetectorAdapter();cv::Ptr<cv::CascadeClassifier> Detector;
};

声明 tracker这个对象。

cv::Ptr<DetectionBasedTracker> tracker;

然后创建tracker,并调用run()方法,会启动一个异步线程,后面的人脸检测会在这个异步线程进行检测了。

string stdFileName = "D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml";
//创建一个主检测适配器
cv::Ptr<CascadeDetectorAdapter> mainDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));
//创建一个跟踪检测适配器
cv::Ptr<CascadeDetectorAdapter> trackingDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));
//创建跟踪器
DetectionBasedTracker::Parameters DetectorParams;
tracker = makePtr<DetectionBasedTracker>(mainDetector, trackingDetector, DetectorParams);
tracker->run();

然后在人脸检测的使用调用tracker->process(grayFrame);进行人脸检测,并调用tracker->getObjects(faces);获得识别出来的人脸。

tracker->process(grayFrame);
tracker->getObjects(faces);

核心代码就是如上所示,接下来我们再来看一下完整的代码

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;class CascadeDetectorAdapter : public DetectionBasedTracker::IDetector
{
public:CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector) :IDetector(),Detector(detector){CV_Assert(detector);}void detect(const cv::Mat& Image, std::vector<cv::Rect>& objects){Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);}virtual ~CascadeDetectorAdapter(){}private:CascadeDetectorAdapter();cv::Ptr<cv::CascadeClassifier> Detector;
};cv::Ptr<DetectionBasedTracker> tracker;int main()
{string stdFileName = "D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml";//创建一个主检测适配器cv::Ptr<CascadeDetectorAdapter> mainDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));//创建一个跟踪检测适配器cv::Ptr<CascadeDetectorAdapter> trackingDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));//创建跟踪器DetectionBasedTracker::Parameters DetectorParams;tracker = makePtr<DetectionBasedTracker>(mainDetector, trackingDetector, DetectorParams);tracker->run();VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像Mat equalizeFrame; //直方图while (true){capture >> frame; //从capture中取数据,将画面输出到frame矩阵里面if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;return -1;}//imshow("摄像头", frame); //显示图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRG//imshow("灰度化", grayFrame); //显示图像//直方图均衡化,用来增强图像对比度,从而让轮廓更加明显equalizeHist(grayFrame, equalizeFrame);//imshow("直方图", equalizeFrame);std::vector<Rect>  faces;tracker->process(grayFrame);tracker->getObjects(faces);for (size_t i = 0; i < faces.size(); i++){rectangle(frame, faces[i], Scalar(0, 0, 255));}imshow("摄像头", frame); //显示图像if (waitKey(30) == 27) //ESC键{break;}}tracker->stop();return 0;
}

8.6 运行效果

运行程序,我们就可以看到本文开头给出的效果了

在这里插入图片描述
至此,我们就使用OpenCV完成实时人脸跟踪识别了。

9. 本文源码下载

使用OpenCV实现人脸识别示例Demo

相关文章:

在Visual Studio上,使用OpenCV实现人脸识别

1. 环境与说明 本文介绍了如何在Visual Studio上&#xff0c;使用OpenCV来实现人脸识别的功能 环境说明 : 操作系统 : windows 10 64位Visual Studio版本 : Visual Studio Community 2022 (社区版)OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版) 实现效果如图所示&#xff0…...

搭建openGauss 5.0 一主一从复制集群

openGauss是一款支持SQL2003标准语法&#xff0c;支持主备部署的高可用关系型国产数据库。 多种存储模式支持复合业务场景&#xff0c;新引入提供原地更新存储引擎。NUMA化数据结构支持高性能。Paxos一致性日志复制协议&#xff0c;主备模式&#xff0c;CRC校验支持高可用。支…...

Docker碎碎念

docker和虚拟机的区别 虚拟机&#xff08;VM&#xff09;是通过在物理硬件上运行一个完整的操作系统来实现的。 每个虚拟机都有自己的内核、设备驱动程序和用户空间&#xff0c;它们是相互独立且完全隔离的。 虚拟机可以在不同的物理服务器之间迁移&#xff0c;因为它们是以整…...

【C++】extern

目录 1. 变量声明和定义的关系 2. 默认状态下&#xff0c;const对象仅在文件内有效 3. 链接指示&#xff1a;extern "C" 3.1 声明一个非C的函数 3.2 链接指示与头文件 3.3 指向extern "C"函数的指针 3.4 链接指示对整个声明都有效 3.5 导出C函数到…...

2023全网Mysql 合集(25w字)附课程 从安装到高级,实战

mysql学习 1.安装mysql 安装教程 2.mysql的详细学习教程 mysql的详细教程 3.mysql 的高级优化 MySQL高级篇&#xff08;SQL优化、索引优化、锁机制、主从复制&#xff09; 4.MySQL 面试 MySQL数据库面试题总结 二.mysql实战 一、创建数据表并插入数据 1、学生表 Stud…...

张俊林:由ChatGPT反思大语言模型(LLM)的技术精要

转自&#xff1a;https://mp.weixin.qq.com/s/eMrv15yOO0oYQ-o-wiuSyw 导读&#xff1a;ChatGPT出现后惊喜或惊醒了很多人。惊喜是因为没想到大型语言模型&#xff08;LLM,Large Language Model&#xff09;效果能好成这样&#xff1b;惊醒是顿悟到我们对LLM的认知及发展理念&a…...

单机编排docker compose

Docker之旅(8)-单机编排docker compose 当在宿主机启动较多的容器时候&#xff0c;如果都是手动操作会觉得比较麻烦而且容易出错&#xff0c; 并且每个容器之间也会有先后启动的顺序依赖等。这个时候推荐使用 docker 单机 编排工具 docker-compose&#xff0c;docker-compose …...

C++ 面向对象三大特性——多态

✅<1>主页&#xff1a;我的代码爱吃辣 &#x1f4c3;<2>知识讲解&#xff1a;C 继承 ☂️<3>开发环境&#xff1a;Visual Studio 2022 &#x1f4ac;<4>前言&#xff1a;面向对象三大特性的&#xff0c;封装&#xff0c;继承&#xff0c;多态&#xff…...

相同数字的积木游戏

题目描述 题目描述 小华和小薇一起通过玩积木游戏学习数学。 他们有很多积木&#xff0c;每个积木块上都有一个数字&#xff0c;积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排&#xff0c;请小薇找到这排积木中数字相同目所处位置最远的2块积木块&#xff0c;计算…...

安防监控视频云存储EasyCVR平台H.265转码功能更新:新增分辨率配置

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上&#xff0c;视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…...

图数据库_Neo4j学习cypher语言_常用函数_关系函数_字符串函数_聚合函数_数据库备份_数据库恢复---Neo4j图数据库工作笔记0008

然后再来看一些常用函数,和字符串函数,这里举个例子,然后其他的 类似 可以看到substring字符串截取函数 可以看到截取成功 聚合函数 这里用了一个count(n) 统计函数,可以看到效果 关系函数,我们用过就是id(r) 可以取出对应的r的id来这样.....

LeetCode150道面试经典题-- 加一(简单)

1.题目 给定一个由 整数 组成的 非空 数组所表示的非负整数&#xff0c;在该数的基础上加一。 最高位数字存放在数组的首位&#xff0c; 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外&#xff0c;这个整数不会以零开头。 2.示例 示例 1&#xff1a; 输入&am…...

Centos7 配置Docker镜像加速器

docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…...

微信小程序中pdf的上传、下载及excel导出

微信小程序中pdf的上传、下载及excel导出 pdf上传上传1&#xff1a;上传2&#xff1a; pdf下载导出excel pdf上传 上传两种方法&#xff1a; 上传1&#xff1a; 1.用vant weapp组件&#xff1a; //pdf上传--vant weapp组件 <view class"content"><van-u…...

Python_11 类的方法

一、查缺补漏 1. 实例方法必须用类实例化对象()来调用&#xff0c;用类来调用时会执行&#xff0c;但是self中不是实例化类地址而是传的字符串 二、类中的方法 1. 实例方法 1. 定义在类里面的普通方法(函数) 2. 第一个参数必须是类实例&#xff0c;在方法调用的时候会自动…...

CentOS系统环境搭建(一)——Centos7更新

Centos7更新 更新 yum&#xff08;包括centos内核&#xff09; yum update执行后&#xff0c;系统将更新到centos 7.9。 从这一篇文章开始开始&#xff0c;我将开始在centos系统环境搭建&#x1f517;https://blog.csdn.net/weixin_43982359/category_12411496.html中开始对C…...

Mariadb高可用MHA

目录 前言 一、概述 &#xff08;一&#xff09;、概念 &#xff08;二&#xff09;、组成 &#xff08;三&#xff09;、特点 &#xff08;四&#xff09;、工作原理 二、案例 &#xff08;一&#xff09;、构建MHA 1.所有节点ssh免密登录 2、MySQL主从复制 &#x…...

SASS 学习笔记 II

SASS 学习笔记 II 上篇笔记&#xff0c;SASS 学习笔记 中包含&#xff1a; 配置 变量 嵌套 这里加一个扩展&#xff0c;嵌套中有一个 & 的用法&#xff0c;使用 & 可以指代当前 block 中的 selector&#xff0c;后面可以追加其他的选择器。如当前的 scope 是 form&a…...

提高 Snowflake 工作效率的 6 大工具

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建可二次编辑的3D应用场景 Snowflake 彻底改变了企业存储、处理和分析数据的方式&#xff0c;提供了无与伦比的灵活性、可扩展性和性能。但是&#xff0c;与任何强大的技术一样&#xff0c;要真正利用其潜力&#xff0c;必须拥有…...

选项方式读取配置IOption、IOptionSnapshot、IOpstionMonitor的区别

IOption, IOptionsSnapshot, 和 IOptionsMonitor 都是 ASP.NET Core 中用于访问配置选项的接口。它们在不同的场景下用于获取配置选项值,并具有不同的生命周期和行为。 IOption: IOption 是一个泛型接口,表示一个配置选项的包装器。它通常在应用程序启动时被解析并注入到需…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...