LA@2@1@线性方程组和简单矩阵方程有解判定定理
文章目录
- 矩阵方程有解判定定理
- 线性方程组有解判定
- 特化:齐次线性方程组有解判定
- 推广:矩阵方程 A X = B AX=B AX=B有解判定
- 证明
- 推论
矩阵方程有解判定定理
线性方程组有解判定
-
线性方程组 A x = b A\bold{x}=\bold{b} Ax=b有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,\bold{b}) (A,b)具有相同的秩 R ( A ) = R ( A , b ) R(A)=R(A,\bold{b}) R(A)=R(A,b),记 r = R ( A ) = R ( A , b ) r=R(A)=R(A,\bold{b}) r=R(A)=R(A,b):
- 若 r = n r=n r=n有方程组有唯一解
- 若 r < n r<{n} r<n方程组有多解
-
对于非齐次线性方程,需要计算 R ( A ) , R ( A , b ) R(A),R(A,\bold{b}) R(A),R(A,b)
-
对于齐次线性方程只需要计算 R ( A ) R(A) R(A)
特化:齐次线性方程组有解判定
-
这是线性方程组有解的特例,可以将定理进一步简化
-
齐次线性方程组 A x = 0 A\bold{x}=\bold{0} Ax=0齐次方程组的情况可以理解为 b \bold{b} b中元素全为0
-
容易知道 A x = 0 A\bold{x}=\bold{0} Ax=0总有 R ( A ) = R ( A ‾ ) = r R(A)=R(\overline{A})=r R(A)=R(A)=r,因此齐次线性方程组总是有解;
- 我们只需要计算系数矩阵 A A A的秩 R ( A ) R(A) R(A)即可得到 r r r
- 若 r = n r=n r=n则方程组有唯一解,并且是零解
- 若 r < n r<n r<n方程组有非零解
-
齐次线性方程组有解判定定理:齐次线性方程组 A x = 0 A\bold{x}=\bold{0} Ax=0有解的充要条件是 R ( A ) ⩽ n R(A)\leqslant{n} R(A)⩽n;
- 有零解(唯一解)的充要条件是 R ( A ) = n R(A)=n R(A)=n
- 有非零解(多解)的充要条件是 R ( A ) < n R(A)<n R(A)<n;
推广:矩阵方程 A X = B AX=B AX=B有解判定
- 这里 B B B是常数项矩阵(不再是系数矩阵的增广矩阵)
- 定理:矩阵方程 A X = B AX=B AX=B有解的充要条件是 R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B)
-
注意这里 X , B X,B X,B不一定是向量,可能是多行多列的矩阵
-
参考同济线代v6@p76@定理6
-
证明
-
设 A , X , B A,X,B A,X,B分别为 m × n m\times{n} m×n, n × l n\times{l} n×l, m × l m\times{l} m×l的矩阵
-
对X和B按列分块:
- X X X= ( x 1 , x 2 , ⋯ x l ) (\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) (x1,x2,⋯xl),
- B B B= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,⋯bl)
-
矩阵方程 A X = B AX=B AX=B等价于 l l l个向量方程(线性方程组)
-
A X = A ( x 1 , x 2 , ⋯ x l ) AX=A(\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) AX=A(x1,x2,⋯xl)= ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,⋯Axl)
-
所有 A X = B AX=B AX=B等价于 ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,⋯Axl)= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,⋯bl)
- 又等价于 A x i = b i ( i = 1 , 2 , ⋯ , l ) A\bold{x}_i=\bold{b}_i(i=1,2,\cdots,l) Axi=bi(i=1,2,⋯,l)共 l l l个线性方程组
- 这些线性方程的共同点是有相同的系数矩阵 A A A,这意味着这 l l l个线性方程组以及原矩阵方程的系数矩阵的秩都是相等的,这个结论很重要
- 而位置数矩阵和常数项矩阵又是相对独立的
-
设 R ( A ) = r R(A)=r R(A)=r,且 A A A的行阶梯形矩阵为 A ~ \widetilde{A} A ,则 A ~ \widetilde{A} A 有 r r r个非零行,且 A ~ \widetilde{A} A 的后 m − r m-r m−r行为全零行
-
( A , B ) (A,B) (A,B)= ( A , b 1 , b 2 , ⋯ b l ) (A,\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (A,b1,b2,⋯bl) ∼ r \overset{r}{\sim} ∼r ( A ~ , b 1 ~ , ⋯ , b l ~ ) {(\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l})} (A ,b1 ,⋯,bl )
- 其中 A ~ \widetilde{A} A 是 A A A的行阶梯形矩阵
- 而向量 b 1 ~ , ⋯ , b l ~ \widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l} b1 ,⋯,bl 是 b 1 , b 2 , ⋯ b l \bold{b}_1,\bold{b}_2,\cdots \bold{b}_l b1,b2,⋯bl与 A ∼ r A ~ A\overset{r}{\sim}\widetilde{A} A∼rA 执行相同的行变换后的结果,即 b i ~ \widetilde{\bold{b}_i} bi 并不表示某个行阶梯形矩阵
-
将等价的第 i i i个线性方程组的增广矩阵初等行变换为行阶梯形矩阵: ( A , b i ) (A,\bold{b}_i) (A,bi) ∼ r \overset{r}{\sim} ∼r ( A ~ , b i ~ ) {(\widetilde{A},\widetilde{\bold{b}_i})} (A ,bi ), ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,⋯,l)
-
A X = B AX=B AX=B有解 ⇔ \Leftrightarrow ⇔ A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=bi ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,⋯,l)有解
- ⇔ \Leftrightarrow ⇔ R ( A , b i ) {R(A,\bold{b}_i)} R(A,bi)= R ( A ) = r R(A)=r R(A)=r, ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,⋯,l)
- ⇔ \Leftrightarrow ⇔ b i ~ {\widetilde{\bold{b}_i}} bi 的后 m − r m-r m−r个分量(元)全为0 ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,⋯,l)
- 因为,若后 m − r m-r m−r个元中存在非零元,会导致 R ( A , b i ) > R ( A ) R(A,\bold{b}_i)>R(A) R(A,bi)>R(A),导致 A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=bi无解
- 而其前 r r r个元的取值情况不会影响 R ( A , b i ) {R(A,\bold{b}_i)} R(A,bi)= R ( A ) R(A) R(A)的成立,我们不关心
- ⇔ \Leftrightarrow ⇔ 矩阵 ( b 1 ~ , ⋯ , b l ~ ) (\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (b1 ,⋯,bl )的后 m − r m-r m−r行全为0;
- ⇔ \Leftrightarrow ⇔ 行阶梯形矩阵 D ~ \widetilde{D} D = ( A ~ , b 1 ~ , ⋯ , b l ~ ) (\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (A ,b1 ,⋯,bl )的后 m − r m-r m−r行全为0
- ⇔ \Leftrightarrow ⇔ R ( D ~ ) ⩽ m − ( m − r ) = r R(\widetilde{D})\leqslant{m-(m-r)=r} R(D )⩽m−(m−r)=r,又因为 D ~ \widetilde{D} D 包含了 A ~ \widetilde{A} A ,所以 R ( A ~ ) = r ⩽ R ( D ~ ) R(\widetilde{A})=r\leqslant{R(\widetilde{D})} R(A )=r⩽R(D )
- ⇔ \Leftrightarrow ⇔ R ( D ~ ) = r R(\widetilde{D})=r R(D )=r
- ⇔ R ( A , B ) = R ( A ) \Leftrightarrow{R(A,B)=R(A)} ⇔R(A,B)=R(A)
-
因此,如果 A X = B AX=B AX=B有解,则 R ( A , B ) = R ( A ) R(A,B)=R(A) R(A,B)=R(A)
推论
- 若 A X = B AX=B AX=B有解,则 R ( B ) ⩽ R ( A , B ) = R ( A ) R(B)\leqslant{R(A,B)}=R(A) R(B)⩽R(A,B)=R(A),所以 R ( B ) ⩽ R ( A ) R(B)\leqslant{R(A)} R(B)⩽R(A),即常数项矩阵的秩小于系数矩阵的秩
- 对 A X = B AX=B AX=B两边同时取转置运算,有 X T A T = B T X^TA^T=B^T XTAT=BT,同理有 R ( B T ) ⩽ R ( X T ) R(B^T)\leqslant R(X^T) R(BT)⩽R(XT),即 R ( B ) ⩽ R ( X ) R(B)\leqslant{R(X)} R(B)⩽R(X)
- 综上, R ( B ) ⩽ min ( R ( A ) , R ( X ) ) R(B)\leqslant{\min(R(A),R(X))} R(B)⩽min(R(A),R(X))
相关文章:
LA@2@1@线性方程组和简单矩阵方程有解判定定理
文章目录 矩阵方程有解判定定理线性方程组有解判定特化:齐次线性方程组有解判定推广:矩阵方程 A X B AXB AXB有解判定证明推论 矩阵方程有解判定定理 线性方程组有解判定 线性方程组 A x b A\bold{x}\bold{b} Axb有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,…...
如何使用ChatGPT创作一个小说式的虚构的世界
世界构建也许是小说写作中最重要的一环,但也可能非常耗时。让ChatGPT加快这一过程吧。 写小说最棒的一点就是有机会从零开始创造一个新世界。你可以创造超凡脱俗的景观,赋予人物魔法。神话故事可以存在于你小说中的现实世界,而传统可以帮助你…...
用于量子通信和互联网的光量子芯片
近年来,新兴的光量子芯片在量子通信和量子互联网领域取得了重大进展。光量子芯片芯片具有可扩展、稳定和低成本等特点,为微型化应用开辟了新的可能性。 7月14日,一篇发表在《light: science & applications》的文章概述了用于量子通信的光…...
11. Vuepress2.x 关闭夜间模式
修改 docs/.vuepress/config.ts 配置文件 设置 themeConfig.darkMode属性详见 官网 module.exports {host: localhost, // ipport: 8099, //端口号title: 我的技术站, // 设置网站标题description: 描述:我的技术站,base: /, //默认路径head: [// 设置 favor.ico&a…...
netty实现websocket通信
调用注意: 1、端口一定要是可以访问的。 2、依赖必须注意和其他版本冲突,比如redis的springboot starter包,会与5.0版本冲突。 <netty.version>4.1.74.Final</netty.version> <dependency><groupId>io…...
两个list如何根据一个list中的属性去过滤掉另一个list中不包含这部分的属性,用流实现
你可以使用Java 8的流来实现这个功能。假设你有两个包含对象的List,每个对象有一个属性,你想根据一个List中的属性值来过滤掉另一个List中不包含这个属性值的对象。下面是一种使用流的方式来实现这个功能 import java.util.ArrayList; import java.util…...
Blender 混合现实3D模型制作指南【XR】
本教程分步展示如何: 减少 3D 模型的多边形数量,使其满足 Microsoft Dynamics 365 Guides 和使用 Microsoft Power Apps 创建的应用程序中包含的混合现实组件的特定性能目标的性能需求。将 3D 模型的多种材质(颜色)组合成可应用于…...
kubeasz在线安装K8S集群单master集群(kubeasz安装之二)
一、介绍 Kubeasz 是一个基于 Ansible 自动化工具,用于快速部署和管理 Kubernetes 集群的工具。它支持快速部署高可用的 Kubernetes 集群,支持容器化部署,可以方便地扩展集群规模,支持多租户,提供了强大的监控和日志分…...
『C语言』数据在内存中的存储规则
前言 小羊近期已经将C语言初阶学习内容与铁汁们分享完成,接下来小羊会继续追更C语言进阶相关知识,小伙伴们坐好板凳,拿起笔开始上课啦~ 一、数据类型的介绍 我们目前已经学了基本的内置类型: char //字符数据类型 short …...
基于ssm+vue的新能源汽车在线租赁管理系统源码和论文PPT
基于ssmvue的新能源汽车在线租赁管理系统源码和论文PPT010 开发环境: 开发工具:idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具:navcat,小海豚等 开发技术:java ssm tomcat8.5 摘 要 随着科学技术的飞速发展࿰…...
深入解析IDS/IPS与SSL/TLS和网络安全
目录 防火墙 IDS IPS DMZ VPN VPS SSL/TLS 动态IP 静态IP 防火墙 防火墙是一种网络安全设备,用于监控和控制网络流量,保护网络免受未经授权的访问、恶意攻击和威胁。防火墙可以基于规则进行数据包过滤,允许或阻止特定类型的流量通过…...
在Visual Studio上,使用OpenCV实现人脸识别
1. 环境与说明 本文介绍了如何在Visual Studio上,使用OpenCV来实现人脸识别的功能 环境说明 : 操作系统 : windows 10 64位Visual Studio版本 : Visual Studio Community 2022 (社区版)OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版) 实现效果如图所示࿰…...
搭建openGauss 5.0 一主一从复制集群
openGauss是一款支持SQL2003标准语法,支持主备部署的高可用关系型国产数据库。 多种存储模式支持复合业务场景,新引入提供原地更新存储引擎。NUMA化数据结构支持高性能。Paxos一致性日志复制协议,主备模式,CRC校验支持高可用。支…...
Docker碎碎念
docker和虚拟机的区别 虚拟机(VM)是通过在物理硬件上运行一个完整的操作系统来实现的。 每个虚拟机都有自己的内核、设备驱动程序和用户空间,它们是相互独立且完全隔离的。 虚拟机可以在不同的物理服务器之间迁移,因为它们是以整…...
【C++】extern
目录 1. 变量声明和定义的关系 2. 默认状态下,const对象仅在文件内有效 3. 链接指示:extern "C" 3.1 声明一个非C的函数 3.2 链接指示与头文件 3.3 指向extern "C"函数的指针 3.4 链接指示对整个声明都有效 3.5 导出C函数到…...
2023全网Mysql 合集(25w字)附课程 从安装到高级,实战
mysql学习 1.安装mysql 安装教程 2.mysql的详细学习教程 mysql的详细教程 3.mysql 的高级优化 MySQL高级篇(SQL优化、索引优化、锁机制、主从复制) 4.MySQL 面试 MySQL数据库面试题总结 二.mysql实战 一、创建数据表并插入数据 1、学生表 Stud…...
张俊林:由ChatGPT反思大语言模型(LLM)的技术精要
转自:https://mp.weixin.qq.com/s/eMrv15yOO0oYQ-o-wiuSyw 导读:ChatGPT出现后惊喜或惊醒了很多人。惊喜是因为没想到大型语言模型(LLM,Large Language Model)效果能好成这样;惊醒是顿悟到我们对LLM的认知及发展理念&a…...
单机编排docker compose
Docker之旅(8)-单机编排docker compose 当在宿主机启动较多的容器时候,如果都是手动操作会觉得比较麻烦而且容易出错, 并且每个容器之间也会有先后启动的顺序依赖等。这个时候推荐使用 docker 单机 编排工具 docker-compose,docker-compose …...
C++ 面向对象三大特性——多态
✅<1>主页:我的代码爱吃辣 📃<2>知识讲解:C 继承 ☂️<3>开发环境:Visual Studio 2022 💬<4>前言:面向对象三大特性的,封装,继承,多态ÿ…...
相同数字的积木游戏
题目描述 题目描述 小华和小薇一起通过玩积木游戏学习数学。 他们有很多积木,每个积木块上都有一个数字,积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排,请小薇找到这排积木中数字相同目所处位置最远的2块积木块,计算…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
