MAC 命令行启动tomcat的详细介绍
MAC 命令行启动tomcat
MAC 命令行启动tomcat的详细介绍
一、修改授权
进入tomcat的bin目录,修改授权
| 1 2 3 | ➜ bin pwd /Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin ➜ bin sudo chmod 755 *.sh |
- sudo为系统超级管理员权限.
- chmod 改变一个或多个文件的存取模式
- 755代表用户对该文件拥有读、写、执行的权限,同组的其他人员拥有执行和读的权限,没有写的权限,其它用户的权限和同组人员一样.
- 777代表,user,group ,others ,都有读写和可执行权限.
- chmod -R 777 folername,获取文件夹权限.
二、启动
执行启动命令sudo sh ./startup.sh:
| 1 2 3 4 5 6 7 | ➜ bin sudo sh ./startup.sh Using CATALINA_BASE: /Users/yp/Documents/workspace/apache-tomcat-7.0.68 Using CATALINA_HOME: /Users/yp/Documents/workspace/apache-tomcat-7.0.68 Using CATALINA_TMPDIR: /Users/yp/Documents/workspace/apache-tomcat-7.0.68/temp Using JRE_HOME: /Library/Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Contents/Home Using CLASSPATH: /Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin/bootstrap.jar:/Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin/tomcat-juli.jar Tomcat started. |
bin sudo sh ./startup.sh
Using CATALINA_BASE: /Users/yp/Documents/workspace/apache-tomcat-7.0.68
Using CATALINA_HOME: /Users/yp/Documents/workspace/apache-tomcat-7.0.68
Using CATALINA_TMPDIR: /Users/yp/Documents/workspace/apache-tomcat-7.0.68/temp
Using JRE_HOME: /Library/Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Contents/Home
Using CLASSPATH: /Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin/bootstrap.jar:/Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin/tomcat-juli.jar
Tomcat started.
访问http://localhost:8080/
相关文章:
MAC 命令行启动tomcat的详细介绍
MAC 命令行启动tomcat MAC 命令行启动tomcat的详细介绍 一、修改授权 进入tomcat的bin目录,修改授权 1 2 3 ➜ bin pwd /Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin ➜ bin sudo chmod 755 *.sh sudo为系统超级管理员权限.chmod 改变一个或多个文件的存取模…...
idea2023 springboot2.7.5+mybatisplus3.5.2+jsp 初学单表增删改查
创建项目 修改pom.xml 为2.7.5 引入mybatisplus 2.1 修改pom.xml <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.2</version></dependency><!--mysq…...
轻松搭建书店小程序
在现今数字化时代,拥有一个自己的小程序成为了许多企业和个人的追求。而对于书店经营者来说,拥有一个能够提供在线购书服务的小程序将有助于吸引更多的读者,并提升销售额。本文将为您介绍如何轻松搭建书店小程序,并将其成功上线。…...
Spark MLlib机器学习库(一)决策树和随机森林案例详解
Spark MLlib机器学习库(一)决策树和随机森林案例详解 1 决策树预测森林植被 1.1 Covtype数据集 数据集的下载地址: https://www.kaggle.com/datasets/uciml/forest-cover-type-dataset 该数据集记录了美国科罗拉多州不同地块的森林植被类型,每个样本…...
CI/CD入门(二)
CI/CD入门(二) 目录 CI/CD入门(二) 1、代码上线方案 1.1 早期手动部署代码1.2 合理化上线方案1.3 大型企业上线制度和流程1.4 php程序代码上线的具体方案1.5 Java程序代码上线的具体方案1.6 代码上线解决方案注意事项2、理解持续集成、持续交付、持续部署 2.1 持续集成2.2 持续…...
【BASH】回顾与知识点梳理(三十五)
【BASH】回顾与知识点梳理 三十五 三十五. 二十七至三十四章知识点总结及练习35.1 总结35.2 练习RAIDLVMsystemd 35.3 简答题 该系列目录 --> 【BASH】回顾与知识点梳理(目录) 三十五. 二十七至三十四章知识点总结及练习 35.1 总结 Quota 可公平的分…...
excel逻辑函数篇2
1、IF(logical_test,[value_if_true],[value_if_false]):判断是否满足某个条件,如果满足返回一个值,如果不满足则返回另一个值 if(条件,条件成立返回的值,条件不成立返回的值) 2、IFS(logical_test1,value_if_true1,…):检查是否…...
设计模式详解-解释器模式
类型:行为型模式 实现原理:实现了一个表达式接口,该接口使用标识来解释语言中的句子 作用:给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器来解释。 主要解决:一些重…...
如何在React项目中动态插入HTML内容
React是一种流行的JavaScript库,用于构建用户界面。它提供了一种声明式的方法来创建可复用的组件,使得开发者能够更轻松地构建交互性的Web应用程序。在React中,我们通常使用JSX语法来描述组件的结构和行为。 在某些情况下,我们可…...
十六、Spring Cloud Sleuth 分布式请求链路追踪
目录 一、概述1、为什么出出现这个技术?需要解决哪些问题2、是什么?3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术?需要解决哪些问题 2、是什么? 官网&am…...
ElasticSearch DSL语句(bool查询、算分控制、地理查询、排序、分页、高亮等)
文章目录 DSL 查询种类DSL query 基本语法1、全文检索2、精确查询3、地理查询4、function score (算分控制)5、bool 查询 搜索结果处理1、排序2、分页3、高亮 RestClient操作 DSL 查询种类 查询所有:查询所有数据,一般在测试时使…...
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)
文章目录 引言四、概率基本公式4.1 减法公式4.2 加法公式4.3 条件概率公式4.4 乘法公式 五、事件的独立性5.1 事件独立的定义5.1.1 两个事件的独立5.1.2 三个事件的独立 5.2 事件独立的性质 写在最后 引言 承接上文,继续介绍概率论与数理统计第一章的内容。 四、概…...
SpringBoot整合RabbitMQ,笔记整理
1创建生产者工程springboot-rabbitmq-produce 2.修改pom.xml文件 <!--父工程--> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.0</version><r…...
搜狗拼音暂用了VSCode及微信小程序开发者工具快捷键Ctrl + Shit + K 搜狗拼音截图快捷键
修改搜狗拼音的快捷键 右键--更多设置--属性设置--按键--系统功能快捷键--系统功能快捷键设置--取消Ctrl Shit K的勾选--勾选截屏并设置为Ctrl Shit A 微信开发者工具设置快捷键 右键--Command Palette--删除行 微信开发者工具快捷键 删除行:Ctrl Shit K 或…...
Python包sklearn画ROC曲线和PR曲线
前言 关于ROC和PR曲线的介绍请参考: 机器学习:准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线 参考: Python下使用sklearn绘制ROC曲线(超详细) Python绘图|Python绘制ROC曲线和PR曲线 源码 …...
snpEff变异注释的一点感想
snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍   SnpEff(Snp Effect)是一个用于预测基因组变异(例如单核苷酸变异、插入、缺失等)对基因功能的影响的生物…...
“保姆级”考研下半年备考时间表
7月-8月 确定考研目标与备考计划 暑假期间是考研复习的关键时期,需要复习的主要内容有:重点关注重要的学科和专业课程,复习相关基础知识和核心概念。制定详细的复习计划并合理安排每天的学习时间,增加真题练习熟悉考试题型和答题技…...
具有弱监督学习的精确3D人脸重建:从单幅图像到图像集的Python实现详解
随着深度学习和计算机视觉技术的飞速发展,3D人脸重建技术在多个领域获得了广泛应用,例如虚拟现实、电影特效、生物识别等。但是,由单幅图像实现高精度的3D人脸重建仍然是一个巨大的挑战。在本文中,我们将探讨如何利用弱监督学习进…...
查询投稿会议的好用网址
会议伴侣 https://www.myhuiban.com/ 艾思科蓝 https://www.ais.cn/...
一元三次方程的解
一元三次方程的解法,点击跳转知乎原文地址 (一)一元三次方程降阶 一元三次方程原型: a x 3 b x 2 c x d 0 a x^3 b x^2 cx d 0 ax3bx2cxd0 代换削元。最简单的方法是线性变化削元。假设x my n, 带入后可以削去未知数…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
