当前位置: 首页 > news >正文

【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)

文章目录

  • 引言
  • 四、概率基本公式
    • 4.1 减法公式
    • 4.2 加法公式
    • 4.3 条件概率公式
    • 4.4 乘法公式
  • 五、事件的独立性
    • 5.1 事件独立的定义
      • 5.1.1 两个事件的独立
      • 5.1.2 三个事件的独立
    • 5.2 事件独立的性质
  • 写在最后


引言

承接上文,继续介绍概率论与数理统计第一章的内容。


四、概率基本公式

4.1 减法公式

P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) . P(A-B)=P(A \overline{B} )=P(A)-P(AB). P(AB)=P(AB)=P(A)P(AB). 证明: A = ( A − B ) + A B A=(A-B)+AB A=(AB)+AB ,且 A − B A-B AB A B AB AB 互斥,根据概率的有限可加性,有 P ( A ) = P ( A − B ) + P ( A B ) P(A)=P(A-B)+P(AB) P(A)=P(AB)+P(AB) ,即 P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB)
A = A B ‾ + A B A=A\overline{B} +AB A=AB+AB ,且 A B ‾ A\overline{B} AB A B AB AB 互斥,由有限可加性得: P ( A B ‾ ) = P ( A ) − P ( A B ) P(A \overline{B} )=P(A)-P(AB) P(AB)=P(A)P(AB)

4.2 加法公式

(1) P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)+P(B)-P(AB). P(A+B)=P(A)+P(B)P(AB).
证明: A + B = ( A − B ) + ( B − A ) + A B A+B=(A-B)+(B-A)+AB A+B=(AB)+(BA)+AB ,且 A − B , B − A , A B A-B,B-A,AB AB,BA,AB 两两互斥,由有限可加性,可得: P ( A + B ) = P ( A − B ) + P ( B − A ) + P ( A B ) P(A+B)=P(A-B)+P(B-A)+P(AB) P(A+B)=P(AB)+P(BA)+P(AB) 再结合减法公式,有: P ( A + B ) = P ( A ) − P ( A B ) + P ( B ) − P ( B A ) + P ( A B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)-P(AB)+P(B)-P(BA)+P(AB)=P(A)+P(B)-P(AB). P(A+B)=P(A)P(AB)+P(B)P(BA)+P(AB)=P(A)+P(B)P(AB). (2) P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) . P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC). P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC).

4.3 条件概率公式

A , B A,B A,B 为两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( B ∣ A ) = P ( A B ) P ( A ) . P(B | A)= \frac{P(AB)}{P(A)}. P(BA)=P(A)P(AB).

4.4 乘法公式

(1)设 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( A B ) = P ( A ) P ( B ∣ A ) . P(AB)=P(A)P(B|A). P(AB)=P(A)P(BA).

(2) P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) … P ( A n ∣ A 1 A 2 … A n − 1 ) . P(A_1A_2 \dots A_n)=P(A_1)P(A_2|A_1)P( A_3|A_1A_2)\dots P(A_n|A_1A_2\dots A_{n-1}). P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1).


五、事件的独立性

5.1 事件独立的定义

5.1.1 两个事件的独立

A , B A,B A,B 为两个随机事件,若 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则称事件 A , B A,B A,B 相互独立。

5.1.2 三个事件的独立

A , B , C A,B,C A,B,C 为三个随机事件,若满足 P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C) ,则称三个事件 A , B , C A,B,C A,B,C 相互独立。

5.2 事件独立的性质

性质 1 若事件 A A A B B B 相互独立,则 A A A B ‾ \overline{B} B A ‾ \overline{A} A B B B A ‾ \overline{A} A B ‾ \overline{B} B 也相互独立,反之亦成立。

证明:由独立可知, P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则 P ( A B ‾ ) = P ( A − B ) = P ( A ) − P ( A B ) = P ( A ) − P ( A ) P ( B ) = P ( A ) P ( B ‾ ) , P(A\overline{B})=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)P(\overline{B}), P(AB)=P(AB)=P(A)P(AB)=P(A)P(A)P(B)=P(A)P(B), A A A B ‾ \overline{B} B 相互独立, A ‾ \overline{A} A B B B 相互独立同理可证。

P ( A ‾ ∩ B ‾ ) = P ( A ∪ B ) ‾ = 1 − P ( A + B ) = 1 − P ( A ) − P ( B ) + P ( A B ) = [ 1 − P ( A ) ] [ 1 − P ( B ) ] = P ( A ‾ ) P ( B ‾ ) P(\overline{A}\cap \overline{B})=P(\overline{A \cup B)}=1-P(A+B)=1-P(A)-P(B)+P(AB)=[1-P(A)][1-P(B)]=P(\overline{A})P(\overline{B}) P(AB)=P(AB)=1P(A+B)=1P(A)P(B)+P(AB)=[1P(A)][1P(B)]=P(A)P(B) ,则有 A ‾ \overline{A} A B ‾ \overline{B} B 相互独立,反之证明同理。

性质 2 A , B A,B A,B 为两个随机事件且 P ( A ) = 0 P(A)=0 P(A)=0 P ( A ) = 1 P(A)=1 P(A)=1 ,则 A , B A,B A,B 相互独立。

证明:设 P ( A ) = 0 P(A)=0 P(A)=0 ,由 A B ⊂ A AB \sub A ABA 可知, P ( A B ) ≤ P ( A ) = 0 P(AB) \leq P(A)=0 P(AB)P(A)=0 ,又因为 P ( A B ) ≥ 0 P(AB) \geq0 P(AB)0 ,故 P ( A B ) = 0 P(AB)=0 P(AB)=0 ,即有 P ( A B ) = P ( A ) = 0 P(AB)=P(A)=0 P(AB)=P(A)=0 ,可得 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,从而有 A , B A,B A,B 相互独立。

P ( A ) = 1 P(A)=1 P(A)=1 P ( A ‾ ) = 0 P(\overline{A})=0 P(A)=0 P ( B A ‾ ) = P ( B ) − P ( A ) ≤ 1 P(B\overline{A})=P(B)-P(A) \leq1 P(BA)=P(B)P(A)1 ,由 P ( A ) = 1 P(A)=1 P(A)=1 ,可知 P ( B A ‾ ) = 0 P(B\overline{A})=0 P(BA)=0 ,故 P ( B A ‾ ) = P ( A ‾ ) P ( B ) P(B\overline{A})=P(\overline{A})P(B) P(BA)=P(A)P(B) ,即有 A ‾ \overline{A} A B B B 相互独立,根据性质 1 ,事件 A , B A,B A,B 相互独立。

1,事件 A , B , C A,B,C A,B,C 两两独立,则事件 A , B , C A,B,C A,B,C 不一定独立。
2,设 A , B A,B A,B 为两个随机事件,且 P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0 ,则
A , B A,B A,B 独立,则 A , B A,B A,B 不互斥。因为此时 P ( A B ) = P ( A ) P ( B ) > 0 P(AB)=P(A)P(B)>0 P(AB)=P(A)P(B)>0 ,不为空集。
A , B A,B A,B 互斥,则 A , B A,B A,B 不独立。此时 P ( A B ) = ∅ P(AB)=\empty P(AB)= ,必不可能等于 P ( A ) P ( B ) P(A)P(B) P(A)P(B)

设事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am ,事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn 相互独立,则由事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am 所构成的任意事件 φ ( A 1 , A 2 , … , A m ) \varphi(A_1,A_2,\dots,A_m) φ(A1,A2,,Am) 与由事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn 构成的任意事件 ϕ ( B 1 , B 2 , … , B n ) \phi (B_1,B_2,\dots,B_n) ϕ(B1,B2,,Bn) 相互独立。


写在最后

剩下一个贝叶斯和全概率,还有概型,放到后面吧。

相关文章:

【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)

文章目录 引言四、概率基本公式4.1 减法公式4.2 加法公式4.3 条件概率公式4.4 乘法公式 五、事件的独立性5.1 事件独立的定义5.1.1 两个事件的独立5.1.2 三个事件的独立 5.2 事件独立的性质 写在最后 引言 承接上文,继续介绍概率论与数理统计第一章的内容。 四、概…...

SpringBoot整合RabbitMQ,笔记整理

1创建生产者工程springboot-rabbitmq-produce 2.修改pom.xml文件 <!--父工程--> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.0</version><r…...

搜狗拼音暂用了VSCode及微信小程序开发者工具快捷键Ctrl + Shit + K 搜狗拼音截图快捷键

修改搜狗拼音的快捷键 右键--更多设置--属性设置--按键--系统功能快捷键--系统功能快捷键设置--取消Ctrl Shit K的勾选--勾选截屏并设置为Ctrl Shit A 微信开发者工具设置快捷键 右键--Command Palette--删除行 微信开发者工具快捷键 删除行&#xff1a;Ctrl Shit K 或…...

Python包sklearn画ROC曲线和PR曲线

前言 关于ROC和PR曲线的介绍请参考&#xff1a; 机器学习&#xff1a;准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线 参考&#xff1a; Python下使用sklearn绘制ROC曲线&#xff08;超详细&#xff09; Python绘图|Python绘制ROC曲线和PR曲线 源码 …...

snpEff变异注释的一点感想

snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍 &nbsp SnpEff&#xff08;Snp Effect&#xff09;是一个用于预测基因组变异&#xff08;例如单核苷酸变异、插入、缺失等&#xff09;对基因功能的影响的生物…...

“保姆级”考研下半年备考时间表

7月-8月 确定考研目标与备考计划 暑假期间是考研复习的关键时期&#xff0c;需要复习的主要内容有&#xff1a;重点关注重要的学科和专业课程&#xff0c;复习相关基础知识和核心概念。制定详细的复习计划并合理安排每天的学习时间&#xff0c;增加真题练习熟悉考试题型和答题技…...

具有弱监督学习的精确3D人脸重建:从单幅图像到图像集的Python实现详解

随着深度学习和计算机视觉技术的飞速发展&#xff0c;3D人脸重建技术在多个领域获得了广泛应用&#xff0c;例如虚拟现实、电影特效、生物识别等。但是&#xff0c;由单幅图像实现高精度的3D人脸重建仍然是一个巨大的挑战。在本文中&#xff0c;我们将探讨如何利用弱监督学习进…...

查询投稿会议的好用网址

会议伴侣 https://www.myhuiban.com/ 艾思科蓝 https://www.ais.cn/...

一元三次方程的解

一元三次方程的解法&#xff0c;点击跳转知乎原文地址 &#xff08;一&#xff09;一元三次方程降阶 一元三次方程原型&#xff1a; a x 3 b x 2 c x d 0 a x^3 b x^2 cx d 0 ax3bx2cxd0 代换削元。最简单的方法是线性变化削元。假设x my n, 带入后可以削去未知数…...

aardio开发语言Excel数据表读取修改保存实例练习

import win.ui; /*DSG{{*/ var winform win.form(text"aardio form";right759;bottom479) winform.add( buttonEnd{cls"button";text"末页";left572;top442;right643;bottom473;z6}; buttonExcelRead{cls"button";text"读取Exce…...

webshell绕过

文章目录 webshell前置知识进阶绕过 webshell 前置知识 <?phpecho "A"^""; ?>运行结果 可以看到出来的结果是字符“&#xff01;”。 为什么会得到这个结果&#xff1f;是因为代码的“A”字符与“”字符产生了异或。 php中&#xff0c;两个变…...

Spring Boot 统一功能处理

目录 1.用户登录权限效验 1.1 Spring AOP 用户统一登录验证的问题 1.2 Spring 拦截器 1.2.1 自定义拦截器 1.2.2 将自定义拦截器加入到系统配置 1.3 拦截器实现原理 1.3.1 实现原理源码分析 2. 统一异常处理 2.1 创建一个异常处理类 2.2 创建异常检测的类和处理业务方法 3. 统一…...

图像处理常见的两种拉流方式

传统算法或者深度学习在进行图像处理之前&#xff0c;总是会首先进行图像的采集&#xff0c;也就是所谓的拉流。解决拉流的方式有两种&#xff0c;一个是直接使用opencv进行取流&#xff0c;另一个是使用ffmpeg进行取流&#xff0c;如下分别介绍这两种方式进行拉流处理。 1、o…...

数据可视化数据调用浅析

数据可视化是现代数据分析和决策支持中不可或缺的一环。它将数据转化为图形、图表和可视化工具&#xff0c;以便更直观地理解和解释数据。在数据可视化的过程中&#xff0c;数据的调用和准备是关键的一步。本文将探讨数据可视化中的数据调用过程&#xff0c;并介绍一些常用的数…...

恒运资本:CPO概念发力走高,兆龙互联涨超10%,华是科技再创新高

CPO概念15日盘中发力走高&#xff0c;截至发稿&#xff0c;华是科技涨超15%再创新高&#xff0c;兆龙互联涨逾11%&#xff0c;中贝通讯涨停&#xff0c;永鼎股份、太辰光涨超5%&#xff0c;天孚通讯涨逾4%。 消息面上&#xff0c;光通讯闻名咨询机构LightCounting近日发布的202…...

【蓝桥杯】[递归]母牛的故事

原题链接&#xff1a;https://www.dotcpp.com/oj/problem1004.html 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 我们列一个年份和母牛数量的表格&#xff1a; 通过观察&#xff0c;找规律&#xff0c;我们发现&#xff1a; 当年份小于等于4时&…...

使用RDP可视化远程桌面连接Linux系统

使用RDP可视化远程桌面连接Linux系统 远程桌面连接Linux安装安装包准备服务器安装xrdp远程连接 远程桌面连接Linux 通常使用SSH来连接服务器&#xff0c;进行命令行操作&#xff0c;但是这次需要远程调试生产环境的内网服务器&#xff0c;进行浏览器访问内网网站&#xff0c;至…...

数据可视化diff工具jsondiffpatch使用学习

1.jsondiffpatch 简介 jsondiffpatch 是一个用于比较和生成 JSON 数据差异的 JavaScript 库。它可以将两个 JSON 对象进行比较&#xff0c;并生成一个描述它们之间差异的 JSON 对象。这个差异对象可以用于多种用途&#xff0c;例如&#xff1a; 生成可视化的差异报告应用差异…...

pdf 转 word

pdf 转 word 一、思路 直接调用LibreOffice 命令进行文档转换的命令行工具 使用的前系统中必须已经安装了 libreofficelibreoffice已翻译的用户界面语言包: 中文 (简体)libreoffice离线帮助文档: 中文 (简体)上传字体 重点&#xff1a;重点&#xff1a;重点&#xff1a; 亲…...

【数据结构OJ题】设计循环队列

原题链接&#xff1a;https://leetcode.cn/problems/design-circular-queue/ 1. 题目描述 2. 循环队列的概念和结构 为充分利用向量空间&#xff0c;克服"假溢出"现象的方法是&#xff1a;将向量空间想象为一个首尾相接的圆环&#xff0c;并称这种向量为循环向量。…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...