当前位置: 首页 > news >正文

【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)

文章目录

  • 引言
  • 四、概率基本公式
    • 4.1 减法公式
    • 4.2 加法公式
    • 4.3 条件概率公式
    • 4.4 乘法公式
  • 五、事件的独立性
    • 5.1 事件独立的定义
      • 5.1.1 两个事件的独立
      • 5.1.2 三个事件的独立
    • 5.2 事件独立的性质
  • 写在最后


引言

承接上文,继续介绍概率论与数理统计第一章的内容。


四、概率基本公式

4.1 减法公式

P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) . P(A-B)=P(A \overline{B} )=P(A)-P(AB). P(AB)=P(AB)=P(A)P(AB). 证明: A = ( A − B ) + A B A=(A-B)+AB A=(AB)+AB ,且 A − B A-B AB A B AB AB 互斥,根据概率的有限可加性,有 P ( A ) = P ( A − B ) + P ( A B ) P(A)=P(A-B)+P(AB) P(A)=P(AB)+P(AB) ,即 P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB)
A = A B ‾ + A B A=A\overline{B} +AB A=AB+AB ,且 A B ‾ A\overline{B} AB A B AB AB 互斥,由有限可加性得: P ( A B ‾ ) = P ( A ) − P ( A B ) P(A \overline{B} )=P(A)-P(AB) P(AB)=P(A)P(AB)

4.2 加法公式

(1) P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)+P(B)-P(AB). P(A+B)=P(A)+P(B)P(AB).
证明: A + B = ( A − B ) + ( B − A ) + A B A+B=(A-B)+(B-A)+AB A+B=(AB)+(BA)+AB ,且 A − B , B − A , A B A-B,B-A,AB AB,BA,AB 两两互斥,由有限可加性,可得: P ( A + B ) = P ( A − B ) + P ( B − A ) + P ( A B ) P(A+B)=P(A-B)+P(B-A)+P(AB) P(A+B)=P(AB)+P(BA)+P(AB) 再结合减法公式,有: P ( A + B ) = P ( A ) − P ( A B ) + P ( B ) − P ( B A ) + P ( A B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)-P(AB)+P(B)-P(BA)+P(AB)=P(A)+P(B)-P(AB). P(A+B)=P(A)P(AB)+P(B)P(BA)+P(AB)=P(A)+P(B)P(AB). (2) P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) . P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC). P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC).

4.3 条件概率公式

A , B A,B A,B 为两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( B ∣ A ) = P ( A B ) P ( A ) . P(B | A)= \frac{P(AB)}{P(A)}. P(BA)=P(A)P(AB).

4.4 乘法公式

(1)设 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( A B ) = P ( A ) P ( B ∣ A ) . P(AB)=P(A)P(B|A). P(AB)=P(A)P(BA).

(2) P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) … P ( A n ∣ A 1 A 2 … A n − 1 ) . P(A_1A_2 \dots A_n)=P(A_1)P(A_2|A_1)P( A_3|A_1A_2)\dots P(A_n|A_1A_2\dots A_{n-1}). P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1).


五、事件的独立性

5.1 事件独立的定义

5.1.1 两个事件的独立

A , B A,B A,B 为两个随机事件,若 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则称事件 A , B A,B A,B 相互独立。

5.1.2 三个事件的独立

A , B , C A,B,C A,B,C 为三个随机事件,若满足 P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C) ,则称三个事件 A , B , C A,B,C A,B,C 相互独立。

5.2 事件独立的性质

性质 1 若事件 A A A B B B 相互独立,则 A A A B ‾ \overline{B} B A ‾ \overline{A} A B B B A ‾ \overline{A} A B ‾ \overline{B} B 也相互独立,反之亦成立。

证明:由独立可知, P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则 P ( A B ‾ ) = P ( A − B ) = P ( A ) − P ( A B ) = P ( A ) − P ( A ) P ( B ) = P ( A ) P ( B ‾ ) , P(A\overline{B})=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)P(\overline{B}), P(AB)=P(AB)=P(A)P(AB)=P(A)P(A)P(B)=P(A)P(B), A A A B ‾ \overline{B} B 相互独立, A ‾ \overline{A} A B B B 相互独立同理可证。

P ( A ‾ ∩ B ‾ ) = P ( A ∪ B ) ‾ = 1 − P ( A + B ) = 1 − P ( A ) − P ( B ) + P ( A B ) = [ 1 − P ( A ) ] [ 1 − P ( B ) ] = P ( A ‾ ) P ( B ‾ ) P(\overline{A}\cap \overline{B})=P(\overline{A \cup B)}=1-P(A+B)=1-P(A)-P(B)+P(AB)=[1-P(A)][1-P(B)]=P(\overline{A})P(\overline{B}) P(AB)=P(AB)=1P(A+B)=1P(A)P(B)+P(AB)=[1P(A)][1P(B)]=P(A)P(B) ,则有 A ‾ \overline{A} A B ‾ \overline{B} B 相互独立,反之证明同理。

性质 2 A , B A,B A,B 为两个随机事件且 P ( A ) = 0 P(A)=0 P(A)=0 P ( A ) = 1 P(A)=1 P(A)=1 ,则 A , B A,B A,B 相互独立。

证明:设 P ( A ) = 0 P(A)=0 P(A)=0 ,由 A B ⊂ A AB \sub A ABA 可知, P ( A B ) ≤ P ( A ) = 0 P(AB) \leq P(A)=0 P(AB)P(A)=0 ,又因为 P ( A B ) ≥ 0 P(AB) \geq0 P(AB)0 ,故 P ( A B ) = 0 P(AB)=0 P(AB)=0 ,即有 P ( A B ) = P ( A ) = 0 P(AB)=P(A)=0 P(AB)=P(A)=0 ,可得 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,从而有 A , B A,B A,B 相互独立。

P ( A ) = 1 P(A)=1 P(A)=1 P ( A ‾ ) = 0 P(\overline{A})=0 P(A)=0 P ( B A ‾ ) = P ( B ) − P ( A ) ≤ 1 P(B\overline{A})=P(B)-P(A) \leq1 P(BA)=P(B)P(A)1 ,由 P ( A ) = 1 P(A)=1 P(A)=1 ,可知 P ( B A ‾ ) = 0 P(B\overline{A})=0 P(BA)=0 ,故 P ( B A ‾ ) = P ( A ‾ ) P ( B ) P(B\overline{A})=P(\overline{A})P(B) P(BA)=P(A)P(B) ,即有 A ‾ \overline{A} A B B B 相互独立,根据性质 1 ,事件 A , B A,B A,B 相互独立。

1,事件 A , B , C A,B,C A,B,C 两两独立,则事件 A , B , C A,B,C A,B,C 不一定独立。
2,设 A , B A,B A,B 为两个随机事件,且 P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0 ,则
A , B A,B A,B 独立,则 A , B A,B A,B 不互斥。因为此时 P ( A B ) = P ( A ) P ( B ) > 0 P(AB)=P(A)P(B)>0 P(AB)=P(A)P(B)>0 ,不为空集。
A , B A,B A,B 互斥,则 A , B A,B A,B 不独立。此时 P ( A B ) = ∅ P(AB)=\empty P(AB)= ,必不可能等于 P ( A ) P ( B ) P(A)P(B) P(A)P(B)

设事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am ,事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn 相互独立,则由事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am 所构成的任意事件 φ ( A 1 , A 2 , … , A m ) \varphi(A_1,A_2,\dots,A_m) φ(A1,A2,,Am) 与由事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn 构成的任意事件 ϕ ( B 1 , B 2 , … , B n ) \phi (B_1,B_2,\dots,B_n) ϕ(B1,B2,,Bn) 相互独立。


写在最后

剩下一个贝叶斯和全概率,还有概型,放到后面吧。

相关文章:

【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)

文章目录 引言四、概率基本公式4.1 减法公式4.2 加法公式4.3 条件概率公式4.4 乘法公式 五、事件的独立性5.1 事件独立的定义5.1.1 两个事件的独立5.1.2 三个事件的独立 5.2 事件独立的性质 写在最后 引言 承接上文,继续介绍概率论与数理统计第一章的内容。 四、概…...

SpringBoot整合RabbitMQ,笔记整理

1创建生产者工程springboot-rabbitmq-produce 2.修改pom.xml文件 <!--父工程--> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.0</version><r…...

搜狗拼音暂用了VSCode及微信小程序开发者工具快捷键Ctrl + Shit + K 搜狗拼音截图快捷键

修改搜狗拼音的快捷键 右键--更多设置--属性设置--按键--系统功能快捷键--系统功能快捷键设置--取消Ctrl Shit K的勾选--勾选截屏并设置为Ctrl Shit A 微信开发者工具设置快捷键 右键--Command Palette--删除行 微信开发者工具快捷键 删除行&#xff1a;Ctrl Shit K 或…...

Python包sklearn画ROC曲线和PR曲线

前言 关于ROC和PR曲线的介绍请参考&#xff1a; 机器学习&#xff1a;准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线 参考&#xff1a; Python下使用sklearn绘制ROC曲线&#xff08;超详细&#xff09; Python绘图|Python绘制ROC曲线和PR曲线 源码 …...

snpEff变异注释的一点感想

snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍 &nbsp SnpEff&#xff08;Snp Effect&#xff09;是一个用于预测基因组变异&#xff08;例如单核苷酸变异、插入、缺失等&#xff09;对基因功能的影响的生物…...

“保姆级”考研下半年备考时间表

7月-8月 确定考研目标与备考计划 暑假期间是考研复习的关键时期&#xff0c;需要复习的主要内容有&#xff1a;重点关注重要的学科和专业课程&#xff0c;复习相关基础知识和核心概念。制定详细的复习计划并合理安排每天的学习时间&#xff0c;增加真题练习熟悉考试题型和答题技…...

具有弱监督学习的精确3D人脸重建:从单幅图像到图像集的Python实现详解

随着深度学习和计算机视觉技术的飞速发展&#xff0c;3D人脸重建技术在多个领域获得了广泛应用&#xff0c;例如虚拟现实、电影特效、生物识别等。但是&#xff0c;由单幅图像实现高精度的3D人脸重建仍然是一个巨大的挑战。在本文中&#xff0c;我们将探讨如何利用弱监督学习进…...

查询投稿会议的好用网址

会议伴侣 https://www.myhuiban.com/ 艾思科蓝 https://www.ais.cn/...

一元三次方程的解

一元三次方程的解法&#xff0c;点击跳转知乎原文地址 &#xff08;一&#xff09;一元三次方程降阶 一元三次方程原型&#xff1a; a x 3 b x 2 c x d 0 a x^3 b x^2 cx d 0 ax3bx2cxd0 代换削元。最简单的方法是线性变化削元。假设x my n, 带入后可以削去未知数…...

aardio开发语言Excel数据表读取修改保存实例练习

import win.ui; /*DSG{{*/ var winform win.form(text"aardio form";right759;bottom479) winform.add( buttonEnd{cls"button";text"末页";left572;top442;right643;bottom473;z6}; buttonExcelRead{cls"button";text"读取Exce…...

webshell绕过

文章目录 webshell前置知识进阶绕过 webshell 前置知识 <?phpecho "A"^""; ?>运行结果 可以看到出来的结果是字符“&#xff01;”。 为什么会得到这个结果&#xff1f;是因为代码的“A”字符与“”字符产生了异或。 php中&#xff0c;两个变…...

Spring Boot 统一功能处理

目录 1.用户登录权限效验 1.1 Spring AOP 用户统一登录验证的问题 1.2 Spring 拦截器 1.2.1 自定义拦截器 1.2.2 将自定义拦截器加入到系统配置 1.3 拦截器实现原理 1.3.1 实现原理源码分析 2. 统一异常处理 2.1 创建一个异常处理类 2.2 创建异常检测的类和处理业务方法 3. 统一…...

图像处理常见的两种拉流方式

传统算法或者深度学习在进行图像处理之前&#xff0c;总是会首先进行图像的采集&#xff0c;也就是所谓的拉流。解决拉流的方式有两种&#xff0c;一个是直接使用opencv进行取流&#xff0c;另一个是使用ffmpeg进行取流&#xff0c;如下分别介绍这两种方式进行拉流处理。 1、o…...

数据可视化数据调用浅析

数据可视化是现代数据分析和决策支持中不可或缺的一环。它将数据转化为图形、图表和可视化工具&#xff0c;以便更直观地理解和解释数据。在数据可视化的过程中&#xff0c;数据的调用和准备是关键的一步。本文将探讨数据可视化中的数据调用过程&#xff0c;并介绍一些常用的数…...

恒运资本:CPO概念发力走高,兆龙互联涨超10%,华是科技再创新高

CPO概念15日盘中发力走高&#xff0c;截至发稿&#xff0c;华是科技涨超15%再创新高&#xff0c;兆龙互联涨逾11%&#xff0c;中贝通讯涨停&#xff0c;永鼎股份、太辰光涨超5%&#xff0c;天孚通讯涨逾4%。 消息面上&#xff0c;光通讯闻名咨询机构LightCounting近日发布的202…...

【蓝桥杯】[递归]母牛的故事

原题链接&#xff1a;https://www.dotcpp.com/oj/problem1004.html 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 我们列一个年份和母牛数量的表格&#xff1a; 通过观察&#xff0c;找规律&#xff0c;我们发现&#xff1a; 当年份小于等于4时&…...

使用RDP可视化远程桌面连接Linux系统

使用RDP可视化远程桌面连接Linux系统 远程桌面连接Linux安装安装包准备服务器安装xrdp远程连接 远程桌面连接Linux 通常使用SSH来连接服务器&#xff0c;进行命令行操作&#xff0c;但是这次需要远程调试生产环境的内网服务器&#xff0c;进行浏览器访问内网网站&#xff0c;至…...

数据可视化diff工具jsondiffpatch使用学习

1.jsondiffpatch 简介 jsondiffpatch 是一个用于比较和生成 JSON 数据差异的 JavaScript 库。它可以将两个 JSON 对象进行比较&#xff0c;并生成一个描述它们之间差异的 JSON 对象。这个差异对象可以用于多种用途&#xff0c;例如&#xff1a; 生成可视化的差异报告应用差异…...

pdf 转 word

pdf 转 word 一、思路 直接调用LibreOffice 命令进行文档转换的命令行工具 使用的前系统中必须已经安装了 libreofficelibreoffice已翻译的用户界面语言包: 中文 (简体)libreoffice离线帮助文档: 中文 (简体)上传字体 重点&#xff1a;重点&#xff1a;重点&#xff1a; 亲…...

【数据结构OJ题】设计循环队列

原题链接&#xff1a;https://leetcode.cn/problems/design-circular-queue/ 1. 题目描述 2. 循环队列的概念和结构 为充分利用向量空间&#xff0c;克服"假溢出"现象的方法是&#xff1a;将向量空间想象为一个首尾相接的圆环&#xff0c;并称这种向量为循环向量。…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...