PyTorch Geometric基本教程
PyG官方文档
# Install torch geometric
!pip install -q torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.2+cu102.html
!pip install -q torch-sparse -f https://pytorch-geometric.com/whl/torch-1.10.2+cu102.html
!pip install -q torch-geometricimport torch
import networkx as nx
import matplotlib.pyplot as plt
1.内置数据集(以KarateClub为例)
from torch_geometric.datasets import KarateClubdataset = KarateClub()
print(f'Dataset: {dataset}:')
print('======================')
# 图的数量
print(f'Number of graphs: {len(dataset)}')
# 每个节点的特征尺寸
print(f'Number of features: {dataset.num_features}')
# 节点的类别数量
print(f'Number of classes: {dataset.num_classes}')
# 获取具体的图
data = dataset[0]
print(data)
print('==============================================================')# 获取图的属性
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {(2*data.num_edges) / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Contains isolated nodes: {data.has_isolated_nodes()}')
print(f'Contains self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
# 取出的图的数据对象为Data类型,包含以下属性
# 1. edge_index 每条边的两个端点的索引组成的元组
# 2. x 节点特征[节点数量,特征维数]
# 3. y 节点标签(类别),每个节点只分配一个类别
# 4. train_mask
Data(edge_index=[2, 156], x=[34, 34], y=[34], train_mask=[34])
print(data)
# 获取所有的边
print(data.edge_idx.T)
2.可视化
def visualize(h, color, epoch=None, loss=None, accuracy=None):plt.figure(figsize=(7,7))plt.xticks([])plt.yticks([])if torch.is_tensor(h):h = h.detach().cpu().numpy()plt.scatter(h[:, 0], h[:, 1], s=140, c=color, cmap="Set2")if epoch is not None and loss is not None and accuracy['train'] is not None and accuracy['val'] is not None:plt.xlabel((f'Epoch: {epoch}, Loss: {loss.item():.4f} \n'f'Training Accuracy: {accuracy["train"]*100:.2f}% \n'f' Validation Accuracy: {accuracy["val"]*100:.2f}%'),fontsize=16)else:# networkx的draw_networkxnx.draw_networkx(h, pos=nx.spring_layout(h, seed=42), with_labels=False, node_color=color, cmap="Set2") plt.show()
from torch_geometric.utils import to_networkx
# 将Data类型转换成networkx
G = to_networkx(data, to_undirected=True)
# 将图可视化,节点颜色为节点的类型
visualize(G, color=data.y)
3.搭建GNN(以GCN为例)
import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConvclass GCN(torch.nn.Module):def __init__(self):super().__init__()self.conv1 = GCNConv(dataset.num_features, 4)self.conv2 = GCNConv(4, 4)self.conv3 = GCNConv(4, 2)self.classifier = Linear(2, dataset.num_classes)def forward(self, x, edge_index):h = self.conv1(x, edge_index)h = h.tanh()h = self.conv2(h, edge_index)h = h.tanh()h = self.conv3(h, edge_index)h = h.tanh()out = self.classifier(h)return out, hmodel = GCN()
print(model)
# 节点分类
model = GCN()out, h = model(data.x, data.edge_index)
print(f'Embedding shape: {list(h.shape)}')visualize(h, color=data.y)
4.在KarateClub数据集上训练
import time
model = GCN()# 交叉熵损失,Adam优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())def train(data):optimizer.zero_grad()out, h = model(data.x, data.edge_index)# 只对train_mask的节点计算lossloss = criterion(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()accuracy = {}# torch.argmax 取置信度最大的一类predicted_classes = torch.argmax(out[data.train_mask], axis=1) # [0.6, 0.2, 0.7, 0.1] -> 2target_classes = data.y[data.train_mask]accuracy['train'] = torch.mean(torch.where(predicted_classes == target_classes, 1, 0).float())predicted_classes = torch.argmax(out, axis=1)target_classes = data.yaccuracy['val'] = torch.mean(torch.where(predicted_classes == target_classes, 1, 0).float())return loss, h, accuracy
for epoch in range(500):loss, h, accuracy = train(data)if epoch % 10 == 0:visualize(h, color=data.y, epoch=epoch, loss=loss, accuracy=accuracy)time.sleep(0.3)
相关文章:
PyTorch Geometric基本教程
PyG官方文档 # Install torch geometric !pip install -q torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.2cu102.html !pip install -q torch-sparse -f https://pytorch-geometric.com/whl/torch-1.10.2cu102.html !pip install -q torch-geometricimport t…...
MAC 命令行启动tomcat的详细介绍
MAC 命令行启动tomcat MAC 命令行启动tomcat的详细介绍 一、修改授权 进入tomcat的bin目录,修改授权 1 2 3 ➜ bin pwd /Users/yp/Documents/workspace/apache-tomcat-7.0.68/bin ➜ bin sudo chmod 755 *.sh sudo为系统超级管理员权限.chmod 改变一个或多个文件的存取模…...

idea2023 springboot2.7.5+mybatisplus3.5.2+jsp 初学单表增删改查
创建项目 修改pom.xml 为2.7.5 引入mybatisplus 2.1 修改pom.xml <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.2</version></dependency><!--mysq…...

轻松搭建书店小程序
在现今数字化时代,拥有一个自己的小程序成为了许多企业和个人的追求。而对于书店经营者来说,拥有一个能够提供在线购书服务的小程序将有助于吸引更多的读者,并提升销售额。本文将为您介绍如何轻松搭建书店小程序,并将其成功上线。…...

Spark MLlib机器学习库(一)决策树和随机森林案例详解
Spark MLlib机器学习库(一)决策树和随机森林案例详解 1 决策树预测森林植被 1.1 Covtype数据集 数据集的下载地址: https://www.kaggle.com/datasets/uciml/forest-cover-type-dataset 该数据集记录了美国科罗拉多州不同地块的森林植被类型,每个样本…...

CI/CD入门(二)
CI/CD入门(二) 目录 CI/CD入门(二) 1、代码上线方案 1.1 早期手动部署代码1.2 合理化上线方案1.3 大型企业上线制度和流程1.4 php程序代码上线的具体方案1.5 Java程序代码上线的具体方案1.6 代码上线解决方案注意事项2、理解持续集成、持续交付、持续部署 2.1 持续集成2.2 持续…...
【BASH】回顾与知识点梳理(三十五)
【BASH】回顾与知识点梳理 三十五 三十五. 二十七至三十四章知识点总结及练习35.1 总结35.2 练习RAIDLVMsystemd 35.3 简答题 该系列目录 --> 【BASH】回顾与知识点梳理(目录) 三十五. 二十七至三十四章知识点总结及练习 35.1 总结 Quota 可公平的分…...

excel逻辑函数篇2
1、IF(logical_test,[value_if_true],[value_if_false]):判断是否满足某个条件,如果满足返回一个值,如果不满足则返回另一个值 if(条件,条件成立返回的值,条件不成立返回的值) 2、IFS(logical_test1,value_if_true1,…):检查是否…...
设计模式详解-解释器模式
类型:行为型模式 实现原理:实现了一个表达式接口,该接口使用标识来解释语言中的句子 作用:给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器来解释。 主要解决:一些重…...
如何在React项目中动态插入HTML内容
React是一种流行的JavaScript库,用于构建用户界面。它提供了一种声明式的方法来创建可复用的组件,使得开发者能够更轻松地构建交互性的Web应用程序。在React中,我们通常使用JSX语法来描述组件的结构和行为。 在某些情况下,我们可…...

十六、Spring Cloud Sleuth 分布式请求链路追踪
目录 一、概述1、为什么出出现这个技术?需要解决哪些问题2、是什么?3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术?需要解决哪些问题 2、是什么? 官网&am…...

ElasticSearch DSL语句(bool查询、算分控制、地理查询、排序、分页、高亮等)
文章目录 DSL 查询种类DSL query 基本语法1、全文检索2、精确查询3、地理查询4、function score (算分控制)5、bool 查询 搜索结果处理1、排序2、分页3、高亮 RestClient操作 DSL 查询种类 查询所有:查询所有数据,一般在测试时使…...
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)
文章目录 引言四、概率基本公式4.1 减法公式4.2 加法公式4.3 条件概率公式4.4 乘法公式 五、事件的独立性5.1 事件独立的定义5.1.1 两个事件的独立5.1.2 三个事件的独立 5.2 事件独立的性质 写在最后 引言 承接上文,继续介绍概率论与数理统计第一章的内容。 四、概…...
SpringBoot整合RabbitMQ,笔记整理
1创建生产者工程springboot-rabbitmq-produce 2.修改pom.xml文件 <!--父工程--> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.0</version><r…...

搜狗拼音暂用了VSCode及微信小程序开发者工具快捷键Ctrl + Shit + K 搜狗拼音截图快捷键
修改搜狗拼音的快捷键 右键--更多设置--属性设置--按键--系统功能快捷键--系统功能快捷键设置--取消Ctrl Shit K的勾选--勾选截屏并设置为Ctrl Shit A 微信开发者工具设置快捷键 右键--Command Palette--删除行 微信开发者工具快捷键 删除行:Ctrl Shit K 或…...
Python包sklearn画ROC曲线和PR曲线
前言 关于ROC和PR曲线的介绍请参考: 机器学习:准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线 参考: Python下使用sklearn绘制ROC曲线(超详细) Python绘图|Python绘制ROC曲线和PR曲线 源码 …...

snpEff变异注释的一点感想
snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍   SnpEff(Snp Effect)是一个用于预测基因组变异(例如单核苷酸变异、插入、缺失等)对基因功能的影响的生物…...

“保姆级”考研下半年备考时间表
7月-8月 确定考研目标与备考计划 暑假期间是考研复习的关键时期,需要复习的主要内容有:重点关注重要的学科和专业课程,复习相关基础知识和核心概念。制定详细的复习计划并合理安排每天的学习时间,增加真题练习熟悉考试题型和答题技…...
具有弱监督学习的精确3D人脸重建:从单幅图像到图像集的Python实现详解
随着深度学习和计算机视觉技术的飞速发展,3D人脸重建技术在多个领域获得了广泛应用,例如虚拟现实、电影特效、生物识别等。但是,由单幅图像实现高精度的3D人脸重建仍然是一个巨大的挑战。在本文中,我们将探讨如何利用弱监督学习进…...

查询投稿会议的好用网址
会议伴侣 https://www.myhuiban.com/ 艾思科蓝 https://www.ais.cn/...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...

Ubuntu系统多网卡多相机IP设置方法
目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机,交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息,系统版本:Ubuntu22.04.5 LTS;内核版本…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...
验证redis数据结构
一、功能验证 1.验证redis的数据结构(如字符串、列表、哈希、集合、有序集合等)是否按照预期工作。 2、常见的数据结构验证方法: ①字符串(string) 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...