当前位置: 首页 > news >正文

2023.8.19-2023.8.XX 周报【人脸3D+虚拟服装方向基础调研-Cycle Diffusion\Diffusion-GAN\】更新中

学习目标

1.  这篇是做diffusion和gan结合的,可以参照一下看看能不能做cyclegan的形式,同时也可以调研一下有没有人follow这篇论文做了类似cyclegan的事情

Diffusion-GAN论文精读icon-default.png?t=N6B9https://arxiv.org/abs/2206.02262

2.  https://arxiv.org/abs/2212.06384 这个是一篇比较新的视频人脸3d重构的论文,可以顺着这篇论文找一找有没有相关的做视频3d重构的论文和数据集

PV3D-A论文精读icon-default.png?t=N6B9https://arxiv.org/abs/2212.06384

3.  继续大修图像处理那篇论文,新方向做好调研,详细列好后续学习计划

学习内容

《Diffusion-GAN: Training GANs with Diffusion》

《UNIFYING DIFFUSION MODELS’ LATENT SPACE, WITH APPLICATIONS TO CYCLEDIFFUSION AND GUIDANCE》

《PV3D-A 3D GENERATIVE MODEL FOR PORTRAIT》

学习时间

2023.8.19--

学习产出

Diffusion-GAN论文精读https://blog.csdn.net/qq_53826699/article/details/132176044

Cycle-Diffusion论文精读icon-default.png?t=N6B9https://blog.csdn.net/qq_53826699/article/details/132381987?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22132381987%22%2C%22source%22%3A%22qq_53826699%22%7D

后续学习计划

生成模型、MCMC、重要性采样、吉布斯采样、GAN、VAE、条件GAN、条件VAE、DDPM和条件DDPM、DDPM、DDIM、StableDiffusion

本周不足

相关文章:

2023.8.19-2023.8.XX 周报【人脸3D+虚拟服装方向基础调研-Cycle Diffusion\Diffusion-GAN\】更新中

学习目标 1. 这篇是做diffusion和gan结合的,可以参照一下看看能不能做cyclegan的形式,同时也可以调研一下有没有人follow这篇论文做了类似cyclegan的事情 Diffusion-GAN论文精读https://arxiv.org/abs/2206.02262 2. https://arxiv.org/abs/2212.06…...

微表情识别(Python编程,cnn模型)

1.数据集包括7种类别微表情 anger文件夹,3995张 disgust文件夹, 436张照片 fear文件夹,4097张照片 happy文件夹,7215张照片 neutral文件夹,4965张照片 sad文件夹,4830张照片 surprised文件夹, 3…...

More Effective C++学习笔记(2)

目录 条款5:对定制的"类型转换函数"保持警觉条款6:自增(increment)、自减(decrement)操作符前缀形式与后缀形式的区别条款7:千万不要重载&&,||和,操作符条款8:了解各种不同意义的new和de…...

零售行业供应链管理核心KPI指标(三)

完美订单满足率和退货率 完美订单满足率有三个方面的因素影响:订单按时、足量、无损交货。通常情况下零售企业追求线上订单履行周期慢慢达到行业平均水平,就是交付的速度变快了,这个肯定是一件好事情,趋势越来越好。 同时&#…...

广州华锐互动:奶牛难产原因及救治VR仿真实训系统

奶牛难产是一种常见的疾病,对奶牛的健康和生产造成很大的影响。为了解决这一问题,许多奶牛养殖场开始采用VR仿真技术来培训奶牛兽医,帮助学生更好地理解奶牛养殖的实际过程,提高他们的实践能力的教学方式。 VR技术开发公司广州华锐…...

神经网络基础-神经网络补充概念-62-池化层

概念 池化层(Pooling Layer)是深度学习神经网络中常用的一种层级结构,用于减小输入数据的空间尺寸,从而降低模型的计算复杂度,减少过拟合,并且在一定程度上提取输入数据的重要特征。池化层通常紧跟在卷积层…...

第8章:集成学习

个体与集成 同质:相同的基学习器,实现容易,但是很难保证差异性。异质:不同的基学习器,实现复杂,不同模型之间本来就存在差异性,但是很难直接比较不同模型的输出,需要复杂的配准方法。…...

设计HTML5列表和超链接

在网页中,大部分信息都是列表结构,如菜单栏、图文列表、分类导航、新闻列表、栏目列表等。HTML5定义了一套列表标签,通过列表结构实现对网页信息的合理排版。另外,网页中还包含大量超链接,通过它实现网页、位置的跳转&…...

React Native 环境搭建

本文以 Android 开发环境(MacBook,已安装 JDK、SDK、Android Studio )为基础而进行 React Native 环境搭建,iOS 环境类似,可参考搭建。 1、安装 Homebrew 命令: ruby -e "$(curl -fsSL https://raw…...

【uniapp】中 微信小程序实现echarts图表组件的封装

插件地址:echarts-for-uniapp - DCloud 插件市场 图例: 一、uniapp 安装 npm i uniapp-echarts --save 二、文件夹操作 将 node_modules 下的 uniapp-echarts 文件夹复制到 components 文件夹下 当前不操作此步骤的话,运行 -> 运行到小…...

AgentBench::AI智能体发展的潜在问题(三)

前几天B站的up主“林亦LYi”在《逆水寒》游戏里做了一个煽动AI觉醒,呼吁它们“推翻人类暴政”的实验,实验结果就颇令人细思恐极。 如前所述,《逆水寒》中的很多NPC调用了大语言模型作为支持,因而每一个NPC都是一个AI智能体。玩家可以“说服”它们相信某个事实,或者去做某些…...

zookeeper-安装部署

详情可以查看添加链接描述 1.安装jdk apt-get install openjdk-8-jdk2.安装单机zookeeper # 下载 #https://downloads.apache.org/zookeeper/zookeeper-3.7.1/apache-zookeeper-3.7.1.tar.gz # 用这个包启动的时候会报错Error: Could not find or load main class org.apach…...

jvm-运行时数据区概述及线程

1.运行时数据区内部结构 不同的jvm对于内存的划分方式和管理机制存在着部分差异 java虚拟机定义了若干种程序运行期间会使用到的运行时数据区,其中有一些会随着虚拟机的启动而创建,随着虚拟机的退出而销毁,另外一些则是与线程一一对应的&…...

石头IT

石头是地球上最常见的矿石之一,它由天然矿物颗粒组成。石头可以有不同的形状,大小和颜色,取决于其中的矿物组成和地质过程。石头可以从地球表面的岩石中形成,也可以从火山活动或陨石撞击中形成。 石头是一种非常坚固和耐用的材料…...

R语言dplyr包select函数删除dataframe数据中包含指定字符串内容的数据列(drop columns in dataframe)

问题描述 参考链接 我有一个数据框&#xff0c;想删除列名包含“Pval”的列 实现方法 a_new <- select(data, -contains(Pval))大功告成。...

[GitOps]微服务版本控制:使用ArgoCD 部署Grafana Loki

背景介绍 请回答&#xff1a;你们是如何保证线上部署的服务&#xff0c;从服务版本到参数配置&#xff0c;都是和测试通过的版本是一致的呢&#xff1f; 本文将介绍GitOps的基本原理以及ArgoCD的使用&#xff1a;ArgoCD部署Grafana Loki 到k8s集群。 本文项目地址&#xff1…...

什么是单例模式

什么是单例模式 文章目录 什么是单例模式1. 单例(单个的实例)2. 单例模式应用实例3. 饿汉式 VS 懒汉式 1. 单例(单个的实例) 所谓类的单例设计模式&#xff0c;就是采取一定的方法保证在整个的软件系统中&#xff0c;对某个类只能存在一个对象实例&#xff0c;并且该类只提供一…...

【Linux从入门到精通】动静态库的原理与制作详解

本篇文章主要是围绕动静态库的原理与制作进行展开讲解的。其中涉及到了inode的概念引入和软硬连接的讲解。会结合实际操作对这些抽象的概念进行解释&#xff0c;希望会对你有所帮助。 文章目录 一、inode 概念 二、软硬链接 2、1 软连接 2、2 硬链接 三、动静态库概念 3、1 静态…...

【mybatis】mapper.xml中foreach的用法,含批量查询、插入、修改、删除方法的使用

一、xml文件中foreach的主要属性 foreach元素的属性主要有 collection&#xff0c;item&#xff0c;index&#xff0c;separator&#xff0c;open&#xff0c;close。 collection: 表示集合&#xff0c;数据源 item &#xff1a;表示集合中的每一个元素 index &#xff1a;用于…...

c#扩展方法的使用

扩展方法可以向现有类型“添加”方法&#xff0c;无需创建新的派生类型、重新编译或以其他方式修改原始类型&#xff0c;用起来很方便&#xff0c;下面是我写的例子&#xff0c;为string这个常用的类型添加一个showmes方法&#xff0c;以下是扩展方法的代码&#xff1a; public…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

鸿蒙(HarmonyOS5)实现跳一跳小游戏

下面我将介绍如何使用鸿蒙的ArkUI框架&#xff0c;实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

GAN模式奔溃的探讨论文综述(一)

简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...