当前位置: 首页 > news >正文

Hoeffding不等式剪枝方法

    在基于物品的协通过滤算法中,当用户历史行为数据有很多时,对计算会有很大挑战,对此可以使用剪枝对数据进行化简来达到减少计算量。
    不是每个物品对都需要进行增量计算。对于两个物品的相似度,每次更新都能够得到一个新的相似度,这个新的相似度可以看做是一个随机变量,那么这个随机变量就有一个期望值。一旦物品之间的相似度可以以较高的置信度确认,它已经在期望值附近小幅度波动,就没必要再去更新了。如果进一步确定是一个比较小的相似度,甚至可以之间去掉这个物品对,其相似度不再参与计算更新。
对于确定这个物品什么时候不用再更新就可以用到Hoeffding不等式。Hoeffding不等式又称为霍夫丁不等式。该不等式给出了随机变量的和与其期望值偏差的概率上限
x^=1n(x1+....+xn)\hat{x}= \frac{1}{n}(x_1+....+x_n) x^=n1(x1+....+xn)
p(x^−E[x^≥ϵ])≤e−2nϵ2p(\hat{x}-E[\hat{x}\geq\epsilon])\leq e^{-2n\epsilon^2} p(x^E[x^ϵ])e2nϵ2
    不等式中x^\hat{x}x^是随机变量X的n个样本的均值,E[x^]E[\hat{x}]E[x^]是随机变量X的期望值。Hoeffding不等式反应的是:随机变量的真实期望值不会超过x^+ϵ\hat{x}+\epsilonx^+ϵ的概率是1−δ1-\delta1δ,其中ϵ\epsilonϵ就是与真实相似度的误差,ϵ\epsilonϵδ\deltaδ及n之间的关系是:
ϵ=ln(1δ)2n\epsilon = \sqrt{\frac{ln(\frac{1}{\delta})}{2n}} ϵ=2nln(δ1)
    Hoeffding不等式适用于有界的随机变量。x^\hat{x}x^在实时推荐系统中就是历次更新得到的相似度平均值,公式中的n是相似度的更新次数。这样一来,选定了δ\deltaδϵ\epsilonϵ之后就可以知道多少次后就能够逼近相似度期望值。假设δ=0.05\delta=0.05δ=0.05
    那么有

与真实相似度误差最少更新次数
0.1150
0.05600
0.0114979

    有了上面的表那么在一个物品对的更新次数已经达到最少更新次数时,且满足相似度误差时就可以不用再更新了。

参考:推荐系统: 关键模块 陈开江

相关文章:

Hoeffding不等式剪枝方法

在基于物品的协通过滤算法中,当用户历史行为数据有很多时,对计算会有很大挑战,对此可以使用剪枝对数据进行化简来达到减少计算量。     不是每个物品对都需要进行增量计算。对于两个物品的相似度,每次更新都能够得到一个新的相…...

【算法】数组中的重复数字问题

数组中的重复数据 数组中重复的数字 错误的集合 以第三题,错误的集合为例 对于这样的问题,有很简单的解决方式,先遍历一次数组,用一个哈希表记录每个数字出现的次数,然后遍历一次 [1…N],看看那个元素重…...

数值方法笔记2:解决非线性方程

1. 不动点定理及其条件验证2. 收敛阶、收敛检测与收敛加速2.1 如何估计不动点迭代的收敛阶xk1g(xk){x}_{{k}1}{g}\left({x}_{{k}}\right)xk1​g(xk​)2.2 给定精度的情况下,如何预测不动点迭代需要迭代的次数2.3 如何加快收敛的速度2.4 停止不定点迭代的条件2.5 不动…...

基于SpringBoot的在线文档管理系统

文末获取源码 开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7/8.0 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9 浏…...

软件体系结构(期末复习)

文章目录软件体系结构软件体系结构概论软件体系结构建模软件体系结构风格统一建模语言基于体系结构的软件开发软件体系结构 软件体系结构概论 软件危机是指计算机软件的开发和维护过程中遇到的一系列严重问题。 软件危机的表现: 软件危机的原因: 软件工程的基本要素&#xf…...

[vue3] pinia的基本使用

使用Pinia npm install piniastore文件里index.js import { createPinia } from piniaconst pinia createPinia()export default piniamain.js导入并引用 import { createApp } from vue import App from ./App.vue import pinia from ./storescreateApp(App).use(pinia).m…...

进程和线程详解

在计算机领域中,进程和线程是非常重要的概念。了解进程和线程是软件开发的基础,也是计算机科学教育中的一部分。本文将介绍进程和线程的概念、区别和应用。 一、什么是进程 在计算机科学中,进程是正在执行的程序实例。一个进程可以由一个或…...

《刀锋》读书笔记

刀锋(毛姆长篇作品精选)毛姆50个笔记点评认为好看的确是完美的结局。《刀锋》里面的人每个人都以自己的方式生活着。艾略特的势利,拉里的自由,伊莎贝尔的现实,苏珊的清醒,索菲的堕落,至于“我”…...

nginx中的ngx_modules

ngx_modules和ngx_module_names是configure脚本生成的,是在objs/ngx_modules.c文件中与其生成的相关的脚本文件相关的变量在options脚本中定义了objs目录的变量NGX_OBJSobjs在init脚本中定义的最终存放ngx_modules的文件 NGX_MODULES_C$NGX_OBJS/ngx_modules.c2. 处…...

设计模式之访问者模式

什么是访问者模式 访问者模式提供了一个作用于某对象结构中的各元素的操作表示,他使我们可以在不改变各元素的类的前提下定义作用于这些元素的新操作。     访问者模式主要包含以下几个角色:         Vistor(抽象访问者):为对象结…...

Go项目(三)

文章目录用户微服务表结构查表web 服务跨域问题图形验证码短信用户注册服务中心注册 grpc 服务动态获取端口负载均衡配置中心启动项目小结用户微服务 作为系统的第一个微服务,开发的技术点前面已经了解了一遍,虽有待补充,但急需实战这里主要…...

CTK学习:(一)编译CTK

CTK插件框架简介 CTK Plugin Framework是用于C++的动态组件系统,以OSGi规范为模型。在此框架下,应用程序由不同的组件组成,遵循面向服务的方法。 ctk是一个开源项目,Github 地址:https://github.com/commontk。 源码地址commontk/CTK: A set of common support code for…...

15种NLP数据增强方法总结与对比

数据增强的方法 数据增强(Data Augmentation,简称DA),是指根据现有数据,合成新数据的一类方法。毕竟数据才是真正的效果天花板,有了更多数据后可以提升效果、增强模型泛化能力、提高鲁棒性等。然而由于NLP…...

Python每日一练(20230219)

目录 1. 循环随机取数组直到得出指定数字? 2. 旋转链表 3. 区间和的个数 1. 循环随机取数组直到得出指定数字? 举个例子: 随机数字范围:0~100 每组数字量:6(s1,s2,s3,s4,s5,s6) 第二轮开始随…...

vTESTstudio - VT System CAPL Functions - VT7001

vtsSerialClose - 关闭VT系统通道的串行端口功能:关闭由系统变量命名空间指定的VT系统通道的串行端口。Target:目标通道变量空间名称,例如:VTS::ECUPowerSupply返回值:0:成功重置目标通道最大和最小值-1&am…...

「可信计算」论文初步解读

可信计算组织(Ttrusted Computing Group,TCG)是一个非盈利的工业标准组织,它的宗旨是加强在相异计算机平台上的计算环境的安全性。TCG于2003年春成立,并采纳了由可信计算平台联盟(the Trusted Computing Platform Alli…...

CSDN 算法技能树 蓝桥杯-基础 刷题+思考总结

切面条-蓝桥杯-基础-CSDN算法技能树https://edu.csdn.net/skill/algorithm/algorithm-530255df51be437b967cbc4524fe66ea?category188 目录 切面条 大衍数列 门牌制作 方阵转置 微生物增殖 成绩统计 星系炸弹 判断闰年的依据: 特别数的和 *日志统计*(双指…...

信小程序点击按钮绘制定制转发分享图

1. 说明 先上代码片断分享链接: https://developers.weixin.qq.com/s/vl3ws9mA72GG 使用 painter 画图 按钮传递定制化信息 效果如下: 2. 关键代码说明 文件列表如下: {"usingComponents": {"painter": "/com…...

Python自动化测试-使用Pandas来高效处理测试数据

Python自动化测试-使用Pandas来高效处理测试数据 目录:导读 一、思考 二、使用pandas来操作Excel文件 三、使用pandas来操作csv文件 四、总结 一、思考 1.Pandas是什么? 功能极其强大的数据分析库可以高效地操作各种数据集 csv格式的文件Excel文件H…...

语音增强学习路线图Roadmap

语音增强算是比较难的研究领域,从入门到精通有很多台阶,本文介绍一些有价值的书籍,值得反复阅读。主要分为基础类和进阶类书籍,大多都是理论和实践相结合的书籍,编程实践是抓手,让知识和基础理论变扎实。基础书籍《信号…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...