当前位置: 首页 > news >正文

15种NLP数据增强方法总结与对比

数据增强的方法

数据增强(Data Augmentation,简称DA),是指根据现有数据,合成新数据的一类方法。毕竟数据才是真正的效果天花板,有了更多数据后可以提升效果、增强模型泛化能力、提高鲁棒性等。然而由于NLP任务天生的难度,类似CV的裁剪方法可能会改变语义,既要保证数据质量又要保证多样性,使得大家在做数据增强时十分谨慎。

作者根据生成样本的多样性程度,将数据增强分为以下三种方法:

  • Paraphrasing:对句子中的词、短语、句子结构做一些更改,保留原始的语义
  • Noising:在保证label不变的同时,增加一些离散或连续的噪声,对语义的影响不大
  • Sampling: 旨在根据目前的数据分布选取新的样本,会生成更多的数据。
    在这里插入图片描述

Paraphrasing

在这里插入图片描述
该类方法根据替换的成分不同,又可以分为词、短语、句子级别。作者共总结了6种方法

  • Thesaurus
    利用词典,知识图谱等外部数据,随机将非停用词替换成同义词或上位词,如果增加多样性的话还可以替换成相同词性的其他词。
  • Semantic Embeddings
    利用语义向量,将词或短语替换成相近的(不一定是同义词)由于每个词都有语义表示,可替换范围更大,而上一种方法只能替换图谱里的。
  • MLMs
    利用BERT等模型,随机mask掉一些成分后生成新的
  • Rules
    利用一些规则,例如缩写、动词变位、否定等,对句子的一些成分进行改写,比如把 is not 变成 isn’t
  • Machine Translation
  • :分为两种,Back-translation指把句子翻译成其他语言再翻译回来,Unidirectional Translation指在跨语言任务中**,把句子翻译成其他语言**
  • Model Generation
  • 利用Seq2seq模型生成语义一致句子。
    在这里插入图片描述
    歧义」主要是指有些多义词在不同场景下意思不一样

Noising

人在读文本时对噪声是免疫的,比如单词乱序、错别字等。基于这个思想,可以给数据增加些噪声来提升模型鲁棒性

在这里插入图片描述

  • Swapping
    除了交换词以外,在分类任务中也可以交换instance或者sentence
  • Deletion
    在分类任务中也可以交换instance或者sentence
  • Insertion
    可以把同义词随机插入句子中
  • Substitution
    把一些词随机替换成其他词(非同义),模拟misspelling的场景。为了避免改变label,可以使用label-independent的词,或者利用训练数据中的其他句子
  • Mixup
    这个方法最近两年比较火,把句子表示和标签分别以一定权重融合,引入连续噪声,可以生成不同label之间的数据**,但可解释性较差**

总的来说,引入噪声的数据增强方法使用简单,但对句子结构和语义造成影响,多样性有限,主要还是提升模型的鲁棒性。

对抗样本
Dropout:也是SimCSE用到的,还有R-drop,都是通过dropout来加入连续噪声
Feature Cut-off:比如BERT的向量都是768维,可以随机把一些维度置为0,这个效果也不错

Sampling

在这里插入图片描述
从数据的分布中采取新样本,不同于较通用的paraphrasing,采样更依赖任务,需要在保证数据可靠性的同时增加更多多样性。比如 前两个数据增强方法更难,作者整理四种方法。
在这里插入图片描述
在这里插入图片描述

Method Stacking

实际应用时可以应用多种方法、或者一种方法的不同粒度。

总结

数据增强算是相当接地气的研究了,少样本、领域迁移、是每个NLPer都会遇到的问题,而在数据上做文章可能比其他模型改动的方法更为有效。同时从这篇综述也可以看到**,数据增强其实可以做得很fancy**,还不影响线上速度,比如我之前就用T5和ELECTRA做过数据增强,都有一些效果,可谓低调而不失奢华,典雅而不失大气,深度拿捏得稳稳的

相关文章:

15种NLP数据增强方法总结与对比

数据增强的方法 数据增强(Data Augmentation,简称DA),是指根据现有数据,合成新数据的一类方法。毕竟数据才是真正的效果天花板,有了更多数据后可以提升效果、增强模型泛化能力、提高鲁棒性等。然而由于NLP…...

Python每日一练(20230219)

目录 1. 循环随机取数组直到得出指定数字? 2. 旋转链表 3. 区间和的个数 1. 循环随机取数组直到得出指定数字? 举个例子: 随机数字范围:0~100 每组数字量:6(s1,s2,s3,s4,s5,s6) 第二轮开始随…...

vTESTstudio - VT System CAPL Functions - VT7001

vtsSerialClose - 关闭VT系统通道的串行端口功能:关闭由系统变量命名空间指定的VT系统通道的串行端口。Target:目标通道变量空间名称,例如:VTS::ECUPowerSupply返回值:0:成功重置目标通道最大和最小值-1&am…...

「可信计算」论文初步解读

可信计算组织(Ttrusted Computing Group,TCG)是一个非盈利的工业标准组织,它的宗旨是加强在相异计算机平台上的计算环境的安全性。TCG于2003年春成立,并采纳了由可信计算平台联盟(the Trusted Computing Platform Alli…...

CSDN 算法技能树 蓝桥杯-基础 刷题+思考总结

切面条-蓝桥杯-基础-CSDN算法技能树https://edu.csdn.net/skill/algorithm/algorithm-530255df51be437b967cbc4524fe66ea?category188 目录 切面条 大衍数列 门牌制作 方阵转置 微生物增殖 成绩统计 星系炸弹 判断闰年的依据: 特别数的和 *日志统计*(双指…...

信小程序点击按钮绘制定制转发分享图

1. 说明 先上代码片断分享链接: https://developers.weixin.qq.com/s/vl3ws9mA72GG 使用 painter 画图 按钮传递定制化信息 效果如下: 2. 关键代码说明 文件列表如下: {"usingComponents": {"painter": "/com…...

Python自动化测试-使用Pandas来高效处理测试数据

Python自动化测试-使用Pandas来高效处理测试数据 目录:导读 一、思考 二、使用pandas来操作Excel文件 三、使用pandas来操作csv文件 四、总结 一、思考 1.Pandas是什么? 功能极其强大的数据分析库可以高效地操作各种数据集 csv格式的文件Excel文件H…...

语音增强学习路线图Roadmap

语音增强算是比较难的研究领域,从入门到精通有很多台阶,本文介绍一些有价值的书籍,值得反复阅读。主要分为基础类和进阶类书籍,大多都是理论和实践相结合的书籍,编程实践是抓手,让知识和基础理论变扎实。基础书籍《信号…...

nginx配置ssl实现https访问

文章目录一、介绍二、创建证书1、OpenSSL创建自签名密钥和证书三、nginx配置四、开放端口一、介绍 nginx配置ssl证书,实现https访问,可以使用自签名SSL证书或者购买机构颁发的证书两种方式参考链接 https://blog.csdn.net/weixin_39198406/article/deta…...

JavaScript 语句

JavaScript 语句向浏览器发出的命令。语句的作用是告诉浏览器该做什么。JavaScript 语句JavaScript 语句是发给浏览器的命令。这些命令的作用是告诉浏览器要做的事情。下面的 JavaScript 语句向 id"demo" 的 HTML 元素输出文本 "Hello Dolly" :…...

将古老的ASP项目转换为PHP初探

ASP 是一种服务器端脚本语言&#xff0c;主要用于开发动态 Web 应用程序。ASP 可以在服务器上执行代码&#xff0c;并将结果返回给客户端浏览器&#xff0c;实现动态生成 Web 页面的功能。ASP 代码通常包含在 <% %> 标记中&#xff0c;以下是一个简单的 ASP 程序示例&…...

数据结构复习(七)模板类封装实现不带头结点的单链表

一、代码 二、总结 一、代码 #include<iostream> using namespace std;template<class T> struct ListNode {T _data;ListNode* next;ListNode(const T& data T()){_data data;next nullptr;}~ListNode(){next nullptr;} };template<class T> class…...

IDEA插件 RestfulTool插件——Restful服务开发辅助工具集

IDEA插件 RestfulTool插件——Restful服务开发辅助工具集 目录IDEA插件 RestfulTool插件——Restful服务开发辅助工具集1.插件介绍2.安装方式3.使用方法1.插件介绍 RestfulTool插件。一套 Restful 服务开发辅助工具集&#xff1a; 提供了一个 Services tree 的显示窗口 双击 …...

2023年全国最新会计专业技术资格精选真题及答案1

百分百题库提供会计专业技术资格考试试题、会计考试预测题、会计专业技术资格考试真题、会计证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 11.下列各项中&#xff0c;影响企业利润表“利润总额”项目的是&#xff08;&…...

Linux 配置RAID组

目录 配置RAID&#xff08;软件RAID&#xff09; 创建RAID组 RAID中出现坏盘如何操作 RAID 添加热备盘 删除RAID组 RAID所解决的问题 提升硬盘的I/O吞吐率 提高硬盘的读写能力 提高硬盘的安全性 进行备份 减少硬盘成本 RAID级别 存储RAID——RAID级别_静下心来敲木鱼的博…...

【2021/推荐/社交网络】Socially-Aware Self-Supervised Tri-Training for Recommendation

部分公式、图表和排版等显示可能异常,可在个人公众号(码农的科研笔记)进行全文免费阅读。 【2021/推荐/社交网络】Socially-Aware Self-Supervised Tri-Training for Recommendation 原文:https://dl.acm.org/doi/10.1145/3447548.3467340 源码:[伯乐 SEPT]、https://git…...

Django搭建个人博客Blog-Day06

展示所有文章Django提供的分页功能说明import os os.environ.setdefault(DJANGO_SETTINGS_MODULE, blog.settings.dev) import django django.setup() # 这个时候才有django的环境 所以导入django中的模块必须写在这句话的后面才有效 from articles.models import Articles #…...

DQL 多表查询

1、多表关系 一对多&#xff08;多对一&#xff09; 案例: 部门 与 员工的关系 关系: 一个部门对应多个员工&#xff0c;一个员工对应一个部门 实现: 在从表的一方建立外键&#xff0c;指向主表一方的主键 多对多 案例: 学生 与 课程的关系 关系: 一个学生可以选修多门课程&am…...

BUUCTF Reverse xor

题目&#xff1a;BUUCTF Reverse xor 一些犯傻后学到了新东西的记录 查壳&#xff0c;没壳&#xff0c;IDA打开 main函数很好理解&#xff0c;输入一个长度为33的字符串&#xff0c;1-32位与前一位异或后与global相等&#xff0c;则判定flag正确 找global 在strings window直…...

vite和esbuild/roolup的优缺点

esbuild 优点 基于go语言&#xff0c;go是纯机器码不使用 AST&#xff0c;优化了构建流程多线程并行 缺点 esbuild 没有提供 AST 的操作能力。所以一些通过 AST 处理代码的 babel-plugin 没有很好的方法过渡到 esbuild 中&#xff08;比如babel-plugin-import&#xff09;。…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...